Loading…

Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene

Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-02, Vol.134 (6), p.2970-2975
Main Authors: Yuan, Qinghong, Gao, Junfeng, Shu, Haibo, Zhao, Jijun, Chen, Xiaoshuang, Ding, Feng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ground-state structures of supported C clusters, C N (N = 16, ..., 26), on four selected transition metal surfaces [Rh(111), Ru(0001), Ni(111), and Cu(111)] are systematically explored by ab initio calculations. It is found that the core–shell structured C21, which is a fraction of C60 possessing three isolated pentagons and C 3v symmetry, is a very stable magic cluster on all these metal surfaces. Comparison with experimental scanning tunneling microscopy images, dI/dV curves, and cluster heights proves that C21 is the experimentally observed dominating C precursor in graphene chemical vapor deposition (CVD) growth. The exceptional stability of the C21 cluster is attributed to its high symmetry, core–shell geometry, and strong binding between edge C atoms and the metal surfaces. Besides, the high barrier of two C21 clusters’ dimerization explains its temperature-dependent behavior in graphene CVD growth.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja2050875