Loading…
Comparison of heat stability of goat milk subjected to ultra-high temperature and in-container sterilization
Goat milk with and without stabilizing salt was subjected to in-container and UHT sterilization. Heat stability was assessed by measuring the amount of sediment in the milk. Without stabilizing salts, goat milk usually produced less sediment when subjected to in-container sterilization compared with...
Saved in:
Published in: | Journal of dairy science 2012-03, Vol.95 (3), p.1057-1063 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Goat milk with and without stabilizing salt was subjected to in-container and UHT sterilization. Heat stability was assessed by measuring the amount of sediment in the milk. Without stabilizing salts, goat milk usually produced less sediment when subjected to in-container sterilization compared with UHT processing. Addition of stabilizing salts up to 12.8mM resulted in a progressive increase in sediment for in-container sterilization. In contrast, adding stabilizing salts at 6.4mM initially reduced sediment formation in UHT-treated milk but addition of stabilizing salts at 12.8mM increased sediment formation. Adding stabilizing salts to goat milk increased pH, decreased ionic calcium, and increased ethanol stability. Adding up to 2mM calcium chloride increased sediment formation more after UHT treatment than after in-container sterilization. These results suggest that no single mechanism or set of reactions causes milk to produce sediment during heating and that the favored pathway is different for UHT and in-container sterilization processes. Poor heat stability could be induced both by increasing ionic calcium and by decreasing it. Ethanol stability is not a good indicator of heat stability for in-container sterilization, but it may be for UHT sterilization, if milk does not enter the region of poor heat stability found at low concentrations of ionic calcium. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2011-4367 |