Loading…

The implementation of a geospatial information technology (GIT)-supported land use change curriculum with urban middle school learners to promote spatial thinking

This study investigated whether a geospatial information technology (GIT)‐supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school con...

Full description

Saved in:
Bibliographic Details
Published in:Journal of research in science teaching 2011-03, Vol.48 (3), p.281-300
Main Author: Bodzin, Alec M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated whether a geospatial information technology (GIT)‐supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks participated in the study. Data gathering methods included pre/posttest assessments, daily classroom observations, daily teacher meetings, and examination of student produced artifacts. Findings indicated that content knowledge about environmental issues associated with LUC and spatial thinking skills involved with aerial and remotely sensed (RS) imagery interpretation increased for all learners. In most content and skill area clusters, effect sizes were larger for lower and middle track learners than for upper track learners. Achievement for spatial thinking items increased for all ability level tracks. The curriculum implementation appeared effective for enhancing spatial thinking skills involved with RS image interpretation to identify objects and investigate ground cover features. Learners at all ability levels had difficulty interpreting time‐sequenced images. Influencing learning contexts including curriculum design principles and instructional strategies are discussed. The findings from this study provide support that spatial thinking can be learned, can be taught formally to all students in an urban middle school, and can be supported by appropriately designed tools, technologies, and curriculum. © 2011 Wiley Periodicals, Inc., Inc. J Res Sci Teach 48: 281–300, 2011
ISSN:0022-4308
1098-2736
DOI:10.1002/tea.20409