Loading…
Semiconductor quantum dot-inorganic nanotube hybrids
A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2012-03, Vol.14 (12), p.4271-4275 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3 |
container_end_page | 4275 |
container_issue | 12 |
container_start_page | 4271 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | KREIZMAN, Ronen SCHWARTZ, Osip DEUTSCH, Zvicka ITZHAKOV, Stella ZAK, Alla COHEN, Sidney R TENNE, Reshef ORON, Dan |
description | A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics. |
doi_str_mv | 10.1039/c2cp24043b |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926153799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671407416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</originalsourceid><addsrcrecordid>eNp90DtPwzAUBWALgWgpLPwAlAWBkAK-ftYjqnhJlRiAObIdB4ISu7WTof-eoIZ2Y7p3-M4ZDkLngG8BU3VniV0Rhhk1B2gKTNBc4Tk73P1STNBJSt8YY-BAj9GEEMoZVmKK2Jtraxt82dsuxGzda9_1bVaGLq99iJ_a1zbz2oeuNy772phYl-kUHVW6Se5svDP08fjwvnjOl69PL4v7ZW4pU10ubGWYBEJAOyqFUEpUknOhJAAVRAouNHYWW4MtYEJNRYg03Fhnhgh1dIautr2rGNa9S13R1sm6ptHehT4VigjgVCo1yOt_JQgJDEsGYqA3W2pjSCm6qljFutVxUwAufvcs9nsO-GLs7U3ryh39G3AAlyPQyeqmitrbOu0dF8DmnNIf2NB77Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671407416</pqid></control><display><type>article</type><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</creator><creatorcontrib>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</creatorcontrib><description>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp24043b</identifier><identifier>PMID: 22354096</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cadmium Compounds - chemistry ; Carbon ; Chemistry ; Colloids - chemistry ; Energy gaps (solid state) ; Exact sciences and technology ; General and physical chemistry ; INT ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotubes - chemistry ; Particle Size ; Photonic band gaps ; Quantum Dots ; Selenium Compounds - chemistry ; Semiconductors ; Sulfides - chemistry ; Sulfur - chemistry ; Surface Properties ; Tungsten - chemistry ; Zinc Compounds - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-03, Vol.14 (12), p.4271-4275</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</citedby><cites>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25614853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22354096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KREIZMAN, Ronen</creatorcontrib><creatorcontrib>SCHWARTZ, Osip</creatorcontrib><creatorcontrib>DEUTSCH, Zvicka</creatorcontrib><creatorcontrib>ITZHAKOV, Stella</creatorcontrib><creatorcontrib>ZAK, Alla</creatorcontrib><creatorcontrib>COHEN, Sidney R</creatorcontrib><creatorcontrib>TENNE, Reshef</creatorcontrib><creatorcontrib>ORON, Dan</creatorcontrib><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</description><subject>Cadmium Compounds - chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Colloids - chemistry</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>INT</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Particle Size</subject><subject>Photonic band gaps</subject><subject>Quantum Dots</subject><subject>Selenium Compounds - chemistry</subject><subject>Semiconductors</subject><subject>Sulfides - chemistry</subject><subject>Sulfur - chemistry</subject><subject>Surface Properties</subject><subject>Tungsten - chemistry</subject><subject>Zinc Compounds - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAUBWALgWgpLPwAlAWBkAK-ftYjqnhJlRiAObIdB4ISu7WTof-eoIZ2Y7p3-M4ZDkLngG8BU3VniV0Rhhk1B2gKTNBc4Tk73P1STNBJSt8YY-BAj9GEEMoZVmKK2Jtraxt82dsuxGzda9_1bVaGLq99iJ_a1zbz2oeuNy772phYl-kUHVW6Se5svDP08fjwvnjOl69PL4v7ZW4pU10ubGWYBEJAOyqFUEpUknOhJAAVRAouNHYWW4MtYEJNRYg03Fhnhgh1dIautr2rGNa9S13R1sm6ptHehT4VigjgVCo1yOt_JQgJDEsGYqA3W2pjSCm6qljFutVxUwAufvcs9nsO-GLs7U3ryh39G3AAlyPQyeqmitrbOu0dF8DmnNIf2NB77Q</recordid><startdate>20120328</startdate><enddate>20120328</enddate><creator>KREIZMAN, Ronen</creator><creator>SCHWARTZ, Osip</creator><creator>DEUTSCH, Zvicka</creator><creator>ITZHAKOV, Stella</creator><creator>ZAK, Alla</creator><creator>COHEN, Sidney R</creator><creator>TENNE, Reshef</creator><creator>ORON, Dan</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120328</creationdate><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><author>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cadmium Compounds - chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Colloids - chemistry</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>INT</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Particle Size</topic><topic>Photonic band gaps</topic><topic>Quantum Dots</topic><topic>Selenium Compounds - chemistry</topic><topic>Semiconductors</topic><topic>Sulfides - chemistry</topic><topic>Sulfur - chemistry</topic><topic>Surface Properties</topic><topic>Tungsten - chemistry</topic><topic>Zinc Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KREIZMAN, Ronen</creatorcontrib><creatorcontrib>SCHWARTZ, Osip</creatorcontrib><creatorcontrib>DEUTSCH, Zvicka</creatorcontrib><creatorcontrib>ITZHAKOV, Stella</creatorcontrib><creatorcontrib>ZAK, Alla</creatorcontrib><creatorcontrib>COHEN, Sidney R</creatorcontrib><creatorcontrib>TENNE, Reshef</creatorcontrib><creatorcontrib>ORON, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KREIZMAN, Ronen</au><au>SCHWARTZ, Osip</au><au>DEUTSCH, Zvicka</au><au>ITZHAKOV, Stella</au><au>ZAK, Alla</au><au>COHEN, Sidney R</au><au>TENNE, Reshef</au><au>ORON, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor quantum dot-inorganic nanotube hybrids</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-03-28</date><risdate>2012</risdate><volume>14</volume><issue>12</issue><spage>4271</spage><epage>4275</epage><pages>4271-4275</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22354096</pmid><doi>10.1039/c2cp24043b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-03, Vol.14 (12), p.4271-4275 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_926153799 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Cadmium Compounds - chemistry Carbon Chemistry Colloids - chemistry Energy gaps (solid state) Exact sciences and technology General and physical chemistry INT Nanocomposites Nanomaterials Nanostructure Nanotubes - chemistry Particle Size Photonic band gaps Quantum Dots Selenium Compounds - chemistry Semiconductors Sulfides - chemistry Sulfur - chemistry Surface Properties Tungsten - chemistry Zinc Compounds - chemistry |
title | Semiconductor quantum dot-inorganic nanotube hybrids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20quantum%20dot-inorganic%20nanotube%20hybrids&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KREIZMAN,%20Ronen&rft.date=2012-03-28&rft.volume=14&rft.issue=12&rft.spage=4271&rft.epage=4275&rft.pages=4271-4275&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp24043b&rft_dat=%3Cproquest_cross%3E1671407416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671407416&rft_id=info:pmid/22354096&rfr_iscdi=true |