Loading…

Semiconductor quantum dot-inorganic nanotube hybrids

A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2012-03, Vol.14 (12), p.4271-4275
Main Authors: KREIZMAN, Ronen, SCHWARTZ, Osip, DEUTSCH, Zvicka, ITZHAKOV, Stella, ZAK, Alla, COHEN, Sidney R, TENNE, Reshef, ORON, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3
cites cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3
container_end_page 4275
container_issue 12
container_start_page 4271
container_title Physical chemistry chemical physics : PCCP
container_volume 14
creator KREIZMAN, Ronen
SCHWARTZ, Osip
DEUTSCH, Zvicka
ITZHAKOV, Stella
ZAK, Alla
COHEN, Sidney R
TENNE, Reshef
ORON, Dan
description A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.
doi_str_mv 10.1039/c2cp24043b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926153799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671407416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</originalsourceid><addsrcrecordid>eNp90DtPwzAUBWALgWgpLPwAlAWBkAK-ftYjqnhJlRiAObIdB4ISu7WTof-eoIZ2Y7p3-M4ZDkLngG8BU3VniV0Rhhk1B2gKTNBc4Tk73P1STNBJSt8YY-BAj9GEEMoZVmKK2Jtraxt82dsuxGzda9_1bVaGLq99iJ_a1zbz2oeuNy772phYl-kUHVW6Se5svDP08fjwvnjOl69PL4v7ZW4pU10ubGWYBEJAOyqFUEpUknOhJAAVRAouNHYWW4MtYEJNRYg03Fhnhgh1dIautr2rGNa9S13R1sm6ptHehT4VigjgVCo1yOt_JQgJDEsGYqA3W2pjSCm6qljFutVxUwAufvcs9nsO-GLs7U3ryh39G3AAlyPQyeqmitrbOu0dF8DmnNIf2NB77Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671407416</pqid></control><display><type>article</type><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</creator><creatorcontrib>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</creatorcontrib><description>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp24043b</identifier><identifier>PMID: 22354096</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cadmium Compounds - chemistry ; Carbon ; Chemistry ; Colloids - chemistry ; Energy gaps (solid state) ; Exact sciences and technology ; General and physical chemistry ; INT ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotubes - chemistry ; Particle Size ; Photonic band gaps ; Quantum Dots ; Selenium Compounds - chemistry ; Semiconductors ; Sulfides - chemistry ; Sulfur - chemistry ; Surface Properties ; Tungsten - chemistry ; Zinc Compounds - chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-03, Vol.14 (12), p.4271-4275</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</citedby><cites>FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25614853$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22354096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KREIZMAN, Ronen</creatorcontrib><creatorcontrib>SCHWARTZ, Osip</creatorcontrib><creatorcontrib>DEUTSCH, Zvicka</creatorcontrib><creatorcontrib>ITZHAKOV, Stella</creatorcontrib><creatorcontrib>ZAK, Alla</creatorcontrib><creatorcontrib>COHEN, Sidney R</creatorcontrib><creatorcontrib>TENNE, Reshef</creatorcontrib><creatorcontrib>ORON, Dan</creatorcontrib><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</description><subject>Cadmium Compounds - chemistry</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Colloids - chemistry</subject><subject>Energy gaps (solid state)</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>INT</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Particle Size</subject><subject>Photonic band gaps</subject><subject>Quantum Dots</subject><subject>Selenium Compounds - chemistry</subject><subject>Semiconductors</subject><subject>Sulfides - chemistry</subject><subject>Sulfur - chemistry</subject><subject>Surface Properties</subject><subject>Tungsten - chemistry</subject><subject>Zinc Compounds - chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAUBWALgWgpLPwAlAWBkAK-ftYjqnhJlRiAObIdB4ISu7WTof-eoIZ2Y7p3-M4ZDkLngG8BU3VniV0Rhhk1B2gKTNBc4Tk73P1STNBJSt8YY-BAj9GEEMoZVmKK2Jtraxt82dsuxGzda9_1bVaGLq99iJ_a1zbz2oeuNy772phYl-kUHVW6Se5svDP08fjwvnjOl69PL4v7ZW4pU10ubGWYBEJAOyqFUEpUknOhJAAVRAouNHYWW4MtYEJNRYg03Fhnhgh1dIautr2rGNa9S13R1sm6ptHehT4VigjgVCo1yOt_JQgJDEsGYqA3W2pjSCm6qljFutVxUwAufvcs9nsO-GLs7U3ryh39G3AAlyPQyeqmitrbOu0dF8DmnNIf2NB77Q</recordid><startdate>20120328</startdate><enddate>20120328</enddate><creator>KREIZMAN, Ronen</creator><creator>SCHWARTZ, Osip</creator><creator>DEUTSCH, Zvicka</creator><creator>ITZHAKOV, Stella</creator><creator>ZAK, Alla</creator><creator>COHEN, Sidney R</creator><creator>TENNE, Reshef</creator><creator>ORON, Dan</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120328</creationdate><title>Semiconductor quantum dot-inorganic nanotube hybrids</title><author>KREIZMAN, Ronen ; SCHWARTZ, Osip ; DEUTSCH, Zvicka ; ITZHAKOV, Stella ; ZAK, Alla ; COHEN, Sidney R ; TENNE, Reshef ; ORON, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cadmium Compounds - chemistry</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Colloids - chemistry</topic><topic>Energy gaps (solid state)</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>INT</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Particle Size</topic><topic>Photonic band gaps</topic><topic>Quantum Dots</topic><topic>Selenium Compounds - chemistry</topic><topic>Semiconductors</topic><topic>Sulfides - chemistry</topic><topic>Sulfur - chemistry</topic><topic>Surface Properties</topic><topic>Tungsten - chemistry</topic><topic>Zinc Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KREIZMAN, Ronen</creatorcontrib><creatorcontrib>SCHWARTZ, Osip</creatorcontrib><creatorcontrib>DEUTSCH, Zvicka</creatorcontrib><creatorcontrib>ITZHAKOV, Stella</creatorcontrib><creatorcontrib>ZAK, Alla</creatorcontrib><creatorcontrib>COHEN, Sidney R</creatorcontrib><creatorcontrib>TENNE, Reshef</creatorcontrib><creatorcontrib>ORON, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KREIZMAN, Ronen</au><au>SCHWARTZ, Osip</au><au>DEUTSCH, Zvicka</au><au>ITZHAKOV, Stella</au><au>ZAK, Alla</au><au>COHEN, Sidney R</au><au>TENNE, Reshef</au><au>ORON, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor quantum dot-inorganic nanotube hybrids</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-03-28</date><risdate>2012</risdate><volume>14</volume><issue>12</issue><spage>4271</spage><epage>4275</epage><pages>4271-4275</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A synthetic route for preparation of inorganic WS(2) nanotube (INT)-colloidal semiconductor quantum dot (QD) hybrid structures is developed, and transient carrier dynamics on these hybrids are studied via transient photoluminescence spectroscopy utilizing several different types of QDs. Measurements reveal efficient resonant energy transfer from the QDs to the INT upon photoexcitation, provided that the QD emission is at a higher energy than the INT direct gap. Charge transfer in the hybrid system, characterized using QDs with band gaps below the INT direct gap, is found to be absent. This is attributed to the presence of an organic barrier layer due to the relatively long-chain organic ligands of the QDs under study. This system, analogous to carbon nanotube-QD hybrids, holds potential for a variety of applications, including photovoltaics, luminescence tagging and optoelectronics.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>22354096</pmid><doi>10.1039/c2cp24043b</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2012-03, Vol.14 (12), p.4271-4275
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_926153799
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Cadmium Compounds - chemistry
Carbon
Chemistry
Colloids - chemistry
Energy gaps (solid state)
Exact sciences and technology
General and physical chemistry
INT
Nanocomposites
Nanomaterials
Nanostructure
Nanotubes - chemistry
Particle Size
Photonic band gaps
Quantum Dots
Selenium Compounds - chemistry
Semiconductors
Sulfides - chemistry
Sulfur - chemistry
Surface Properties
Tungsten - chemistry
Zinc Compounds - chemistry
title Semiconductor quantum dot-inorganic nanotube hybrids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20quantum%20dot-inorganic%20nanotube%20hybrids&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KREIZMAN,%20Ronen&rft.date=2012-03-28&rft.volume=14&rft.issue=12&rft.spage=4271&rft.epage=4275&rft.pages=4271-4275&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp24043b&rft_dat=%3Cproquest_cross%3E1671407416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6cfb471221ae3766996f755697113627656a0ec0cb0c1023bf227b5bceb21a3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671407416&rft_id=info:pmid/22354096&rfr_iscdi=true