Loading…

Simulation of Slag Freeze Layer Formation: Part II: Numerical Model

The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676
Main Authors: Guevara, Fernando J., Irons, Gordon A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3
cites cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3
container_end_page 676
container_issue 4
container_start_page 664
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 42
creator Guevara, Fernando J.
Irons, Gordon A.
description The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10 8 , respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.
doi_str_mv 10.1007/s11663-011-9525-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926278147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926278147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLeAiKfVTD433qRYLdQPUM8hprNly37UZPdQf73RiojgaQbmeV-GJ8uOgZ4DpfoiAijFcwqQG8lkznayEUjBczCgdtNONc-lArmfHcS4opQqY_gomzxVzVC7vupa0pXkqXZLMg2I70jmboOBTLvQfJ0vyaMLPZnNLsn90GCovKvJXbfA-jDbK10d8eh7jrOX6fXz5DafP9zMJlfz3HNd9Lk2yAUyDoXgr8pQ5wyCNgaVLpVnXEm_MOC4EkxoT8Fh4YUTBUUOC8Ne-Tg72_auQ_c2YOxtU0WPde1a7IZoDVNMFyB0Ik_-kKtuCG16zoLiRmgpQSYKtpQPXYwBS7sOVePCxgK1n1bt1qpNVu2nVctS5vS72cUkoAyu9VX8CTIhGC2KInFsy8V0apcYfn3wb_kHGrCDwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639475515</pqid></control><display><type>article</type><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><source>Springer Nature</source><creator>Guevara, Fernando J. ; Irons, Gordon A.</creator><creatorcontrib>Guevara, Fernando J. ; Irons, Gordon A.</creatorcontrib><description>The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10 8 , respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-011-9525-2</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adiabatic flow ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Density ; Exact sciences and technology ; Heat transfer ; Materials Science ; Mathematical models ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Process metallurgy ; Production of metals ; Series &amp; special reports ; Simulation ; Slag ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Viscosity ; Walls</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676</ispartof><rights>THE MINERALS, METALS &amp; MATERIALS SOCIETY and ASM INTERNATIONAL 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</citedby><cites>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24420888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guevara, Fernando J.</creatorcontrib><creatorcontrib>Irons, Gordon A.</creatorcontrib><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10 8 , respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Process metallurgy</subject><subject>Production of metals</subject><subject>Series &amp; special reports</subject><subject>Simulation</subject><subject>Slag</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Viscosity</subject><subject>Walls</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLeAiKfVTD433qRYLdQPUM8hprNly37UZPdQf73RiojgaQbmeV-GJ8uOgZ4DpfoiAijFcwqQG8lkznayEUjBczCgdtNONc-lArmfHcS4opQqY_gomzxVzVC7vupa0pXkqXZLMg2I70jmboOBTLvQfJ0vyaMLPZnNLsn90GCovKvJXbfA-jDbK10d8eh7jrOX6fXz5DafP9zMJlfz3HNd9Lk2yAUyDoXgr8pQ5wyCNgaVLpVnXEm_MOC4EkxoT8Fh4YUTBUUOC8Ne-Tg72_auQ_c2YOxtU0WPde1a7IZoDVNMFyB0Ik_-kKtuCG16zoLiRmgpQSYKtpQPXYwBS7sOVePCxgK1n1bt1qpNVu2nVctS5vS72cUkoAyu9VX8CTIhGC2KInFsy8V0apcYfn3wb_kHGrCDwA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Guevara, Fernando J.</creator><creator>Irons, Gordon A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110801</creationdate><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><author>Guevara, Fernando J. ; Irons, Gordon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Process metallurgy</topic><topic>Production of metals</topic><topic>Series &amp; special reports</topic><topic>Simulation</topic><topic>Slag</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Viscosity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara, Fernando J.</creatorcontrib><creatorcontrib>Irons, Gordon A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara, Fernando J.</au><au>Irons, Gordon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>42</volume><issue>4</issue><spage>664</spage><epage>676</epage><pages>664-676</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10 8 , respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-011-9525-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676
issn 1073-5615
1543-1916
language eng
recordid cdi_proquest_miscellaneous_926278147
source Springer Nature
subjects Adiabatic flow
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computer simulation
Density
Exact sciences and technology
Heat transfer
Materials Science
Mathematical models
Metallic Materials
Metals. Metallurgy
Nanotechnology
Process metallurgy
Production of metals
Series & special reports
Simulation
Slag
Solidification
Structural Materials
Surfaces and Interfaces
Thin Films
Viscosity
Walls
title Simulation of Slag Freeze Layer Formation: Part II: Numerical Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Slag%20Freeze%20Layer%20Formation:%20Part%20II:%20Numerical%20Model&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Guevara,%20Fernando%20J.&rft.date=2011-08-01&rft.volume=42&rft.issue=4&rft.spage=664&rft.epage=676&rft.pages=664-676&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-011-9525-2&rft_dat=%3Cproquest_cross%3E926278147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1639475515&rft_id=info:pmid/&rfr_iscdi=true