Loading…
Simulation of Slag Freeze Layer Formation: Part II: Numerical Model
The experiments from Part I with CaCl 2 -H 2 O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of...
Saved in:
Published in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3 |
container_end_page | 676 |
container_issue | 4 |
container_start_page | 664 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 42 |
creator | Guevara, Fernando J. Irons, Gordon A. |
description | The experiments from Part I with CaCl
2
-H
2
O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10
8
, respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate. |
doi_str_mv | 10.1007/s11663-011-9525-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926278147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926278147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLeAiKfVTD433qRYLdQPUM8hprNly37UZPdQf73RiojgaQbmeV-GJ8uOgZ4DpfoiAijFcwqQG8lkznayEUjBczCgdtNONc-lArmfHcS4opQqY_gomzxVzVC7vupa0pXkqXZLMg2I70jmboOBTLvQfJ0vyaMLPZnNLsn90GCovKvJXbfA-jDbK10d8eh7jrOX6fXz5DafP9zMJlfz3HNd9Lk2yAUyDoXgr8pQ5wyCNgaVLpVnXEm_MOC4EkxoT8Fh4YUTBUUOC8Ne-Tg72_auQ_c2YOxtU0WPde1a7IZoDVNMFyB0Ik_-kKtuCG16zoLiRmgpQSYKtpQPXYwBS7sOVePCxgK1n1bt1qpNVu2nVctS5vS72cUkoAyu9VX8CTIhGC2KInFsy8V0apcYfn3wb_kHGrCDwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639475515</pqid></control><display><type>article</type><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><source>Springer Nature</source><creator>Guevara, Fernando J. ; Irons, Gordon A.</creator><creatorcontrib>Guevara, Fernando J. ; Irons, Gordon A.</creatorcontrib><description>The experiments from Part I with CaCl
2
-H
2
O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10
8
, respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-011-9525-2</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adiabatic flow ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Density ; Exact sciences and technology ; Heat transfer ; Materials Science ; Mathematical models ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Process metallurgy ; Production of metals ; Series & special reports ; Simulation ; Slag ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Viscosity ; Walls</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676</ispartof><rights>THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</citedby><cites>FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24420888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guevara, Fernando J.</creatorcontrib><creatorcontrib>Irons, Gordon A.</creatorcontrib><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>The experiments from Part I with CaCl
2
-H
2
O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10
8
, respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</description><subject>Adiabatic flow</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Process metallurgy</subject><subject>Production of metals</subject><subject>Series & special reports</subject><subject>Simulation</subject><subject>Slag</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Viscosity</subject><subject>Walls</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFZ_gLeAiKfVTD433qRYLdQPUM8hprNly37UZPdQf73RiojgaQbmeV-GJ8uOgZ4DpfoiAijFcwqQG8lkznayEUjBczCgdtNONc-lArmfHcS4opQqY_gomzxVzVC7vupa0pXkqXZLMg2I70jmboOBTLvQfJ0vyaMLPZnNLsn90GCovKvJXbfA-jDbK10d8eh7jrOX6fXz5DafP9zMJlfz3HNd9Lk2yAUyDoXgr8pQ5wyCNgaVLpVnXEm_MOC4EkxoT8Fh4YUTBUUOC8Ne-Tg72_auQ_c2YOxtU0WPde1a7IZoDVNMFyB0Ik_-kKtuCG16zoLiRmgpQSYKtpQPXYwBS7sOVePCxgK1n1bt1qpNVu2nVctS5vS72cUkoAyu9VX8CTIhGC2KInFsy8V0apcYfn3wb_kHGrCDwA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Guevara, Fernando J.</creator><creator>Irons, Gordon A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20110801</creationdate><title>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</title><author>Guevara, Fernando J. ; Irons, Gordon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adiabatic flow</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Process metallurgy</topic><topic>Production of metals</topic><topic>Series & special reports</topic><topic>Simulation</topic><topic>Slag</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Viscosity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guevara, Fernando J.</creatorcontrib><creatorcontrib>Irons, Gordon A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guevara, Fernando J.</au><au>Irons, Gordon A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Slag Freeze Layer Formation: Part II: Numerical Model</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>42</volume><issue>4</issue><spage>664</spage><epage>676</epage><pages>664-676</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>The experiments from Part I with CaCl
2
-H
2
O solidification in a differentially heated, square cavity were simulated in two dimensions using a control volume technique in a fixed grid. The test conditions and physical properties of the fluid resulted in Prandtl and Rayleigh numbers in the range of 50 and 2.1 × 10
8
, respectively, and the solidification was observed to be planar with dispersed solid particles. In the mathematical model, temperature-dependent viscosity and density functions were employed. To suppress velocities in the solid phase, various models were tested, and a high effective viscosity was found most appropriate. The results compare well with the experiments in terms of solid layer growth, horizontal and vertical velocities, heat transfer coefficients, and temperature distributions. Hydrodynamic boundary layers on the solidified front and on the hot vertical wall tend to be nonsymmetric, as well on the top and bottom adiabatic walls. The high viscosity value imposed on the two-phase zone affects the velocity profile close to the solid front and modifies the heat transfer rate.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11663-011-9525-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2011-08, Vol.42 (4), p.664-676 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_926278147 |
source | Springer Nature |
subjects | Adiabatic flow Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Computer simulation Density Exact sciences and technology Heat transfer Materials Science Mathematical models Metallic Materials Metals. Metallurgy Nanotechnology Process metallurgy Production of metals Series & special reports Simulation Slag Solidification Structural Materials Surfaces and Interfaces Thin Films Viscosity Walls |
title | Simulation of Slag Freeze Layer Formation: Part II: Numerical Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Slag%20Freeze%20Layer%20Formation:%20Part%20II:%20Numerical%20Model&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Guevara,%20Fernando%20J.&rft.date=2011-08-01&rft.volume=42&rft.issue=4&rft.spage=664&rft.epage=676&rft.pages=664-676&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-011-9525-2&rft_dat=%3Cproquest_cross%3E926278147%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-79e34e231843b690aa9e1799e67f6c2365cd91a364247c01ae8c4a480e31d92b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1639475515&rft_id=info:pmid/&rfr_iscdi=true |