Loading…

Identification of bearing faults using time domain zero-crossings

In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analys...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing 2011-11, Vol.25 (8), p.3078-3088
Main Authors: William, P.E., Hoffman, M.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3
cites cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3
container_end_page 3088
container_issue 8
container_start_page 3078
container_title Mechanical systems and signal processing
container_volume 25
creator William, P.E.
Hoffman, M.W.
description In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels. ► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.
doi_str_mv 10.1016/j.ymssp.2011.06.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926306628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327011002238</els_id><sourcerecordid>926306628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWyyQawSxk7s2AsWVcWjUiU2sLYcZ4xc5VHsBKl8PelDLFmNRnPvnZlDyC2FjAIVD5ts18a4zRhQmoHIAOgZmVFQIqWMinMyAyllmrMSLslVjBsAUAWIGVmsauwG77w1g--7pHdJhSb47jNxZmyGmIxx3wy-xaTuW-O75AdDn9rQx_0kXpMLZ5qIN6c6Jx_PT-_L13T99rJaLtapzQUf0hKdMlwVOVRc5rlywHnJRVVZV1CEkqOQWNZKGVZKJuuCowOkpXWOIaUmn5P7Y-429F8jxkG3PlpsGtNhP0atmMhBCCYnZX5UHm4M6PQ2-NaEnaag97z0Rh946T0vDUJPvCbX3SnfRGsaF0xnffyzsoLzgks-6R6POpye_fYYdLQeO4u1D2gHXff-3z2_UsKCFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926306628</pqid></control><display><type>article</type><title>Identification of bearing faults using time domain zero-crossings</title><source>ScienceDirect Freedom Collection</source><creator>William, P.E. ; Hoffman, M.W.</creator><creatorcontrib>William, P.E. ; Hoffman, M.W.</creatorcontrib><description>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels. ► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2011.06.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bearing ; Bearing faults ; Defects ; Exact sciences and technology ; Feedforward ; Fundamental areas of phenomenology (including applications) ; Measurements common to several branches of physics and astronomy ; Mechanical systems ; Metrology, measurements and laboratory procedures ; Neural networks ; Physics ; Solid mechanics ; Spectra ; Structural and continuum mechanics ; Time domain ; Velocity, acceleration and rotation ; Vibration ; Vibration signal ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Zero-crossing</subject><ispartof>Mechanical systems and signal processing, 2011-11, Vol.25 (8), p.3078-3088</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</citedby><cites>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24554585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>William, P.E.</creatorcontrib><creatorcontrib>Hoffman, M.W.</creatorcontrib><title>Identification of bearing faults using time domain zero-crossings</title><title>Mechanical systems and signal processing</title><description>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels. ► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</description><subject>Bearing</subject><subject>Bearing faults</subject><subject>Defects</subject><subject>Exact sciences and technology</subject><subject>Feedforward</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical systems</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spectra</subject><subject>Structural and continuum mechanics</subject><subject>Time domain</subject><subject>Velocity, acceleration and rotation</subject><subject>Vibration</subject><subject>Vibration signal</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Zero-crossing</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWyyQawSxk7s2AsWVcWjUiU2sLYcZ4xc5VHsBKl8PelDLFmNRnPvnZlDyC2FjAIVD5ts18a4zRhQmoHIAOgZmVFQIqWMinMyAyllmrMSLslVjBsAUAWIGVmsauwG77w1g--7pHdJhSb47jNxZmyGmIxx3wy-xaTuW-O75AdDn9rQx_0kXpMLZ5qIN6c6Jx_PT-_L13T99rJaLtapzQUf0hKdMlwVOVRc5rlywHnJRVVZV1CEkqOQWNZKGVZKJuuCowOkpXWOIaUmn5P7Y-429F8jxkG3PlpsGtNhP0atmMhBCCYnZX5UHm4M6PQ2-NaEnaag97z0Rh946T0vDUJPvCbX3SnfRGsaF0xnffyzsoLzgks-6R6POpye_fYYdLQeO4u1D2gHXff-3z2_UsKCFA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>William, P.E.</creator><creator>Hoffman, M.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Identification of bearing faults using time domain zero-crossings</title><author>William, P.E. ; Hoffman, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bearing</topic><topic>Bearing faults</topic><topic>Defects</topic><topic>Exact sciences and technology</topic><topic>Feedforward</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical systems</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spectra</topic><topic>Structural and continuum mechanics</topic><topic>Time domain</topic><topic>Velocity, acceleration and rotation</topic><topic>Vibration</topic><topic>Vibration signal</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Zero-crossing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>William, P.E.</creatorcontrib><creatorcontrib>Hoffman, M.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>William, P.E.</au><au>Hoffman, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of bearing faults using time domain zero-crossings</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>25</volume><issue>8</issue><spage>3078</spage><epage>3088</epage><pages>3078-3088</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels. ► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2011.06.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2011-11, Vol.25 (8), p.3078-3088
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_miscellaneous_926306628
source ScienceDirect Freedom Collection
subjects Bearing
Bearing faults
Defects
Exact sciences and technology
Feedforward
Fundamental areas of phenomenology (including applications)
Measurements common to several branches of physics and astronomy
Mechanical systems
Metrology, measurements and laboratory procedures
Neural networks
Physics
Solid mechanics
Spectra
Structural and continuum mechanics
Time domain
Velocity, acceleration and rotation
Vibration
Vibration signal
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Zero-crossing
title Identification of bearing faults using time domain zero-crossings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20bearing%20faults%20using%20time%20domain%20zero-crossings&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=William,%20P.E.&rft.date=2011-11-01&rft.volume=25&rft.issue=8&rft.spage=3078&rft.epage=3088&rft.pages=3078-3088&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2011.06.001&rft_dat=%3Cproquest_cross%3E926306628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926306628&rft_id=info:pmid/&rfr_iscdi=true