Loading…
Identification of bearing faults using time domain zero-crossings
In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analys...
Saved in:
Published in: | Mechanical systems and signal processing 2011-11, Vol.25 (8), p.3078-3088 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3 |
container_end_page | 3088 |
container_issue | 8 |
container_start_page | 3078 |
container_title | Mechanical systems and signal processing |
container_volume | 25 |
creator | William, P.E. Hoffman, M.W. |
description | In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.
► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis. |
doi_str_mv | 10.1016/j.ymssp.2011.06.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926306628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327011002238</els_id><sourcerecordid>926306628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWyyQawSxk7s2AsWVcWjUiU2sLYcZ4xc5VHsBKl8PelDLFmNRnPvnZlDyC2FjAIVD5ts18a4zRhQmoHIAOgZmVFQIqWMinMyAyllmrMSLslVjBsAUAWIGVmsauwG77w1g--7pHdJhSb47jNxZmyGmIxx3wy-xaTuW-O75AdDn9rQx_0kXpMLZ5qIN6c6Jx_PT-_L13T99rJaLtapzQUf0hKdMlwVOVRc5rlywHnJRVVZV1CEkqOQWNZKGVZKJuuCowOkpXWOIaUmn5P7Y-429F8jxkG3PlpsGtNhP0atmMhBCCYnZX5UHm4M6PQ2-NaEnaag97z0Rh946T0vDUJPvCbX3SnfRGsaF0xnffyzsoLzgks-6R6POpye_fYYdLQeO4u1D2gHXff-3z2_UsKCFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926306628</pqid></control><display><type>article</type><title>Identification of bearing faults using time domain zero-crossings</title><source>ScienceDirect Freedom Collection</source><creator>William, P.E. ; Hoffman, M.W.</creator><creatorcontrib>William, P.E. ; Hoffman, M.W.</creatorcontrib><description>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.
► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2011.06.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bearing ; Bearing faults ; Defects ; Exact sciences and technology ; Feedforward ; Fundamental areas of phenomenology (including applications) ; Measurements common to several branches of physics and astronomy ; Mechanical systems ; Metrology, measurements and laboratory procedures ; Neural networks ; Physics ; Solid mechanics ; Spectra ; Structural and continuum mechanics ; Time domain ; Velocity, acceleration and rotation ; Vibration ; Vibration signal ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Zero-crossing</subject><ispartof>Mechanical systems and signal processing, 2011-11, Vol.25 (8), p.3078-3088</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</citedby><cites>FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24554585$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>William, P.E.</creatorcontrib><creatorcontrib>Hoffman, M.W.</creatorcontrib><title>Identification of bearing faults using time domain zero-crossings</title><title>Mechanical systems and signal processing</title><description>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.
► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</description><subject>Bearing</subject><subject>Bearing faults</subject><subject>Defects</subject><subject>Exact sciences and technology</subject><subject>Feedforward</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Mechanical systems</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Spectra</subject><subject>Structural and continuum mechanics</subject><subject>Time domain</subject><subject>Velocity, acceleration and rotation</subject><subject>Vibration</subject><subject>Vibration signal</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Zero-crossing</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWyyQawSxk7s2AsWVcWjUiU2sLYcZ4xc5VHsBKl8PelDLFmNRnPvnZlDyC2FjAIVD5ts18a4zRhQmoHIAOgZmVFQIqWMinMyAyllmrMSLslVjBsAUAWIGVmsauwG77w1g--7pHdJhSb47jNxZmyGmIxx3wy-xaTuW-O75AdDn9rQx_0kXpMLZ5qIN6c6Jx_PT-_L13T99rJaLtapzQUf0hKdMlwVOVRc5rlywHnJRVVZV1CEkqOQWNZKGVZKJuuCowOkpXWOIaUmn5P7Y-429F8jxkG3PlpsGtNhP0atmMhBCCYnZX5UHm4M6PQ2-NaEnaag97z0Rh946T0vDUJPvCbX3SnfRGsaF0xnffyzsoLzgks-6R6POpye_fYYdLQeO4u1D2gHXff-3z2_UsKCFA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>William, P.E.</creator><creator>Hoffman, M.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Identification of bearing faults using time domain zero-crossings</title><author>William, P.E. ; Hoffman, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bearing</topic><topic>Bearing faults</topic><topic>Defects</topic><topic>Exact sciences and technology</topic><topic>Feedforward</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Mechanical systems</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Spectra</topic><topic>Structural and continuum mechanics</topic><topic>Time domain</topic><topic>Velocity, acceleration and rotation</topic><topic>Vibration</topic><topic>Vibration signal</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Zero-crossing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>William, P.E.</creatorcontrib><creatorcontrib>Hoffman, M.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>William, P.E.</au><au>Hoffman, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of bearing faults using time domain zero-crossings</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>25</volume><issue>8</issue><spage>3078</spage><epage>3088</epage><pages>3078-3088</pages><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.
► Signal processing using time, frequency, and sparse/compressive analysis. ► Low power feature extraction algorithms, estimation and detection. ► Multi-modal signal acquisition, spatio-temporal decision fusion. ► Unattended ground sensors, monitoring techniques, fault detection, and diagnosis.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2011.06.001</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2011-11, Vol.25 (8), p.3078-3088 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_miscellaneous_926306628 |
source | ScienceDirect Freedom Collection |
subjects | Bearing Bearing faults Defects Exact sciences and technology Feedforward Fundamental areas of phenomenology (including applications) Measurements common to several branches of physics and astronomy Mechanical systems Metrology, measurements and laboratory procedures Neural networks Physics Solid mechanics Spectra Structural and continuum mechanics Time domain Velocity, acceleration and rotation Vibration Vibration signal Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Zero-crossing |
title | Identification of bearing faults using time domain zero-crossings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20bearing%20faults%20using%20time%20domain%20zero-crossings&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=William,%20P.E.&rft.date=2011-11-01&rft.volume=25&rft.issue=8&rft.spage=3078&rft.epage=3088&rft.pages=3078-3088&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2011.06.001&rft_dat=%3Cproquest_cross%3E926306628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-7ef9a59430b58339f055756bbcf41e075e68e7d99a27828d45ef0e17cff2e11a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926306628&rft_id=info:pmid/&rfr_iscdi=true |