Loading…

Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm

Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costa...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230
Main Authors: Shen, Wei, Sun, Yue Shi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3
container_end_page 1230
container_issue SUPPL.2
container_start_page 1225
container_title Key engineering materials
container_volume 467-469
creator Shen, Wei
Sun, Yue Shi
description Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.
doi_str_mv 10.4028/www.scientific.net/KEM.467-469.1225
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730053175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</originalsourceid><addsrcrecordid>eNqVkUtLAzEUhQdRUKv_ITsFmTGPSWayrLVVsUXwsQ5p5o5G5lGTDLX-elMquBNcXO5dnHPgni9JLgjOckzLy_V6nXljoQu2tibrIFzeTxdZLoo0FzIjlPK95IgIQVNZSL4fb0xYKksqDpNj798xZqQk_ChZXmvbbNBCf9p2aNG0AROcNWje6wrNegdG-2C7V7S24Q09Xs3QwyrY1n5BhZYbNJ49jZHt0H26AN15NGkGH8BtDePmtXfR1J4kB7VuPJz-7FHyMps-T27T-cPN3WQ8Tw3LaUg5B6JzXkgNUjBZCAmMGlovayFJTkxRYWaIqTQheUkoxOcoAGCjJXBaVmyUnO1yV67_GMAH1VpvoGl0B_3glaSC4TKXLCrP_1SSgmHMGSl4lE52UuN67x3UauVsq91GEay2LFRkoX5ZqMhCRRYqsogj1ZZFTJnuUoKLLQUwb-q9H1wX6_hXzjfksZwe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730053175</pqid></control><display><type>article</type><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><source>Scientific.net Journals</source><creator>Shen, Wei ; Sun, Yue Shi</creator><creatorcontrib>Shen, Wei ; Sun, Yue Shi</creatorcontrib><description>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.467-469.1225</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Climate ; Cluster analysis ; Clustering ; Fish ; Forecasting ; Humidity ; Neural networks ; Trains</subject><ispartof>Key engineering materials, 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230</ispartof><rights>2011 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1104?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Sun, Yue Shi</creatorcontrib><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><title>Key engineering materials</title><description>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</description><subject>Algorithms</subject><subject>Climate</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Fish</subject><subject>Forecasting</subject><subject>Humidity</subject><subject>Neural networks</subject><subject>Trains</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVkUtLAzEUhQdRUKv_ITsFmTGPSWayrLVVsUXwsQ5p5o5G5lGTDLX-elMquBNcXO5dnHPgni9JLgjOckzLy_V6nXljoQu2tibrIFzeTxdZLoo0FzIjlPK95IgIQVNZSL4fb0xYKksqDpNj798xZqQk_ChZXmvbbNBCf9p2aNG0AROcNWje6wrNegdG-2C7V7S24Q09Xs3QwyrY1n5BhZYbNJ49jZHt0H26AN15NGkGH8BtDePmtXfR1J4kB7VuPJz-7FHyMps-T27T-cPN3WQ8Tw3LaUg5B6JzXkgNUjBZCAmMGlovayFJTkxRYWaIqTQheUkoxOcoAGCjJXBaVmyUnO1yV67_GMAH1VpvoGl0B_3glaSC4TKXLCrP_1SSgmHMGSl4lE52UuN67x3UauVsq91GEay2LFRkoX5ZqMhCRRYqsogj1ZZFTJnuUoKLLQUwb-q9H1wX6_hXzjfksZwe</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Shen, Wei</creator><creator>Sun, Yue Shi</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110101</creationdate><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><author>Shen, Wei ; Sun, Yue Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Climate</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Fish</topic><topic>Forecasting</topic><topic>Humidity</topic><topic>Neural networks</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Sun, Yue Shi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wei</au><au>Sun, Yue Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</atitle><jtitle>Key engineering materials</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>467-469</volume><issue>SUPPL.2</issue><spage>1225</spage><epage>1230</epage><pages>1225-1230</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.467-469.1225</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_926308493
source Scientific.net Journals
subjects Algorithms
Climate
Cluster analysis
Clustering
Fish
Forecasting
Humidity
Neural networks
Trains
title Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20Maximum%20Electric%20Load%20Forecasting%20with%20RBF%20Optimized%20by%20AFSA%20in%20K-Means%20Clustering%20Algorithm&rft.jtitle=Key%20engineering%20materials&rft.au=Shen,%20Wei&rft.date=2011-01-01&rft.volume=467-469&rft.issue=SUPPL.2&rft.spage=1225&rft.epage=1230&rft.pages=1225-1230&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.467-469.1225&rft_dat=%3Cproquest_cross%3E1730053175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730053175&rft_id=info:pmid/&rfr_iscdi=true