Loading…
Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm
Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costa...
Saved in:
Published in: | Key engineering materials 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3 |
container_end_page | 1230 |
container_issue | SUPPL.2 |
container_start_page | 1225 |
container_title | Key engineering materials |
container_volume | 467-469 |
creator | Shen, Wei Sun, Yue Shi |
description | Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load. |
doi_str_mv | 10.4028/www.scientific.net/KEM.467-469.1225 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926308493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730053175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</originalsourceid><addsrcrecordid>eNqVkUtLAzEUhQdRUKv_ITsFmTGPSWayrLVVsUXwsQ5p5o5G5lGTDLX-elMquBNcXO5dnHPgni9JLgjOckzLy_V6nXljoQu2tibrIFzeTxdZLoo0FzIjlPK95IgIQVNZSL4fb0xYKksqDpNj798xZqQk_ChZXmvbbNBCf9p2aNG0AROcNWje6wrNegdG-2C7V7S24Q09Xs3QwyrY1n5BhZYbNJ49jZHt0H26AN15NGkGH8BtDePmtXfR1J4kB7VuPJz-7FHyMps-T27T-cPN3WQ8Tw3LaUg5B6JzXkgNUjBZCAmMGlovayFJTkxRYWaIqTQheUkoxOcoAGCjJXBaVmyUnO1yV67_GMAH1VpvoGl0B_3glaSC4TKXLCrP_1SSgmHMGSl4lE52UuN67x3UauVsq91GEay2LFRkoX5ZqMhCRRYqsogj1ZZFTJnuUoKLLQUwb-q9H1wX6_hXzjfksZwe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730053175</pqid></control><display><type>article</type><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><source>Scientific.net Journals</source><creator>Shen, Wei ; Sun, Yue Shi</creator><creatorcontrib>Shen, Wei ; Sun, Yue Shi</creatorcontrib><description>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.467-469.1225</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Climate ; Cluster analysis ; Clustering ; Fish ; Forecasting ; Humidity ; Neural networks ; Trains</subject><ispartof>Key engineering materials, 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230</ispartof><rights>2011 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1104?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Sun, Yue Shi</creatorcontrib><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><title>Key engineering materials</title><description>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</description><subject>Algorithms</subject><subject>Climate</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Fish</subject><subject>Forecasting</subject><subject>Humidity</subject><subject>Neural networks</subject><subject>Trains</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVkUtLAzEUhQdRUKv_ITsFmTGPSWayrLVVsUXwsQ5p5o5G5lGTDLX-elMquBNcXO5dnHPgni9JLgjOckzLy_V6nXljoQu2tibrIFzeTxdZLoo0FzIjlPK95IgIQVNZSL4fb0xYKksqDpNj798xZqQk_ChZXmvbbNBCf9p2aNG0AROcNWje6wrNegdG-2C7V7S24Q09Xs3QwyrY1n5BhZYbNJ49jZHt0H26AN15NGkGH8BtDePmtXfR1J4kB7VuPJz-7FHyMps-T27T-cPN3WQ8Tw3LaUg5B6JzXkgNUjBZCAmMGlovayFJTkxRYWaIqTQheUkoxOcoAGCjJXBaVmyUnO1yV67_GMAH1VpvoGl0B_3glaSC4TKXLCrP_1SSgmHMGSl4lE52UuN67x3UauVsq91GEay2LFRkoX5ZqMhCRRYqsogj1ZZFTJnuUoKLLQUwb-q9H1wX6_hXzjfksZwe</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Shen, Wei</creator><creator>Sun, Yue Shi</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110101</creationdate><title>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</title><author>Shen, Wei ; Sun, Yue Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Climate</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Fish</topic><topic>Forecasting</topic><topic>Humidity</topic><topic>Neural networks</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Sun, Yue Shi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Wei</au><au>Sun, Yue Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm</atitle><jtitle>Key engineering materials</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>467-469</volume><issue>SUPPL.2</issue><spage>1225</spage><epage>1230</epage><pages>1225-1230</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Electric load forecasting is an important aspect in the operation of energy market. Many researchers have tried various methods and have achieved considerable results. In this paper, we used Radial Basis Function Neural Network (RBFN) to train data and forecast daily maximum electric load of a costal city in North China. In order to have a better result, we introduced Artificial Fish Swarm Algorithm (AFSA) to optimize RBF and adjust the center of K-means clustering algorithm. Data mining techniques were also employed to select indicators with impact on electric load. By comparing the forecast values and actual data, we arrived at conclusion that RBF optimized by AFSA could produce accurate result in forecasting daily maximum electric load. We also found that climate factors (temperature, humidity and air-pressure) had significant impact on daily maximum electric load.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.467-469.1225</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2011-01, Vol.467-469 (SUPPL.2), p.1225-1230 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_926308493 |
source | Scientific.net Journals |
subjects | Algorithms Climate Cluster analysis Clustering Fish Forecasting Humidity Neural networks Trains |
title | Daily Maximum Electric Load Forecasting with RBF Optimized by AFSA in K-Means Clustering Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20Maximum%20Electric%20Load%20Forecasting%20with%20RBF%20Optimized%20by%20AFSA%20in%20K-Means%20Clustering%20Algorithm&rft.jtitle=Key%20engineering%20materials&rft.au=Shen,%20Wei&rft.date=2011-01-01&rft.volume=467-469&rft.issue=SUPPL.2&rft.spage=1225&rft.epage=1230&rft.pages=1225-1230&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.467-469.1225&rft_dat=%3Cproquest_cross%3E1730053175%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-55e1a4579ae9639769e32c2fbf69141c7d03c1cda114812e6622eee0ca9e528d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1730053175&rft_id=info:pmid/&rfr_iscdi=true |