Loading…
Combinatorial PDEs on Cayley and coset graphs
Building on the work by E. Barletta and S. Dragomir (2002) [3], this paper solves the initial value problems for the combinatorial heat and wave equations on Cayley and coset graphs.
Saved in:
Published in: | Discrete mathematics 2011-11, Vol.311 (22), p.2587-2592 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-4c5fbf23c9107ffa1f0c2a4c94f3fe7b151bc5848fcae5d779108631106bdacd3 |
container_end_page | 2592 |
container_issue | 22 |
container_start_page | 2587 |
container_title | Discrete mathematics |
container_volume | 311 |
creator | Lal, A.K. Mohanty, S. Nilakantan, N. |
description | Building on the work by E. Barletta and S. Dragomir (2002)
[3], this paper solves the initial value problems for the combinatorial heat and wave equations on Cayley and coset graphs. |
doi_str_mv | 10.1016/j.disc.2011.07.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X11003578</els_id><sourcerecordid>926309463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4c5fbf23c9107ffa1f0c2a4c94f3fe7b151bc5848fcae5d779108631106bdacd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNNexNOumWSTbMGLrPUDCnpQ6C1kZxNN2e7WZCv035tS8ehpGHjed5iHkEugBVCQN6ui9RELRgEKqgrKxRGZQKVYLitYHpMJpcByLsXylJzFuKJpl7yakLwe1o3vzTgEb7rs9X4es6HParPr7C4zfZvhEO2YfQSz-Yzn5MSZLtqL3zkl7w_zt_opX7w8Ptd3ixy5UGNeonCNYxxnQJVzBhxFZkqclY47qxoQ0KCoysqhsaJVKnGV5ABUNq3Blk_J9aF3E4avrY2jXqf3bNeZ3g7bqGdMcjorJU8kO5AYhhiDdXoT_NqEnQaq92r0Su_V6L0aTZVOalLo6rfeRDSdC6ZHH_-SrBRKAi8Td3vgbPr129ugI3rbo219sDjqdvD_nfkBlgZ43g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309463</pqid></control><display><type>article</type><title>Combinatorial PDEs on Cayley and coset graphs</title><source>ScienceDirect Journals</source><creator>Lal, A.K. ; Mohanty, S. ; Nilakantan, N.</creator><creatorcontrib>Lal, A.K. ; Mohanty, S. ; Nilakantan, N.</creatorcontrib><description>Building on the work by E. Barletta and S. Dragomir (2002)
[3], this paper solves the initial value problems for the combinatorial heat and wave equations on Cayley and coset graphs.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2011.07.035</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Cayley graph ; Characters ; Combinatorial analysis ; Combinatorics ; Combinatorics. Ordered structures ; Coset graph ; Drag (hindrance) ; Exact sciences and technology ; Fourier transform ; Geometry ; Graphs ; Laplacian ; Mathematical analysis ; Mathematics ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Discrete mathematics, 2011-11, Vol.311 (22), p.2587-2592</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-4c5fbf23c9107ffa1f0c2a4c94f3fe7b151bc5848fcae5d779108631106bdacd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24576134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lal, A.K.</creatorcontrib><creatorcontrib>Mohanty, S.</creatorcontrib><creatorcontrib>Nilakantan, N.</creatorcontrib><title>Combinatorial PDEs on Cayley and coset graphs</title><title>Discrete mathematics</title><description>Building on the work by E. Barletta and S. Dragomir (2002)
[3], this paper solves the initial value problems for the combinatorial heat and wave equations on Cayley and coset graphs.</description><subject>Algebra</subject><subject>Cayley graph</subject><subject>Characters</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Coset graph</subject><subject>Drag (hindrance)</subject><subject>Exact sciences and technology</subject><subject>Fourier transform</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Laplacian</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNNexNOumWSTbMGLrPUDCnpQ6C1kZxNN2e7WZCv035tS8ehpGHjed5iHkEugBVCQN6ui9RELRgEKqgrKxRGZQKVYLitYHpMJpcByLsXylJzFuKJpl7yakLwe1o3vzTgEb7rs9X4es6HParPr7C4zfZvhEO2YfQSz-Yzn5MSZLtqL3zkl7w_zt_opX7w8Ptd3ixy5UGNeonCNYxxnQJVzBhxFZkqclY47qxoQ0KCoysqhsaJVKnGV5ABUNq3Blk_J9aF3E4avrY2jXqf3bNeZ3g7bqGdMcjorJU8kO5AYhhiDdXoT_NqEnQaq92r0Su_V6L0aTZVOalLo6rfeRDSdC6ZHH_-SrBRKAi8Td3vgbPr129ugI3rbo219sDjqdvD_nfkBlgZ43g</recordid><startdate>20111128</startdate><enddate>20111128</enddate><creator>Lal, A.K.</creator><creator>Mohanty, S.</creator><creator>Nilakantan, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111128</creationdate><title>Combinatorial PDEs on Cayley and coset graphs</title><author>Lal, A.K. ; Mohanty, S. ; Nilakantan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4c5fbf23c9107ffa1f0c2a4c94f3fe7b151bc5848fcae5d779108631106bdacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Cayley graph</topic><topic>Characters</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Coset graph</topic><topic>Drag (hindrance)</topic><topic>Exact sciences and technology</topic><topic>Fourier transform</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Laplacian</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lal, A.K.</creatorcontrib><creatorcontrib>Mohanty, S.</creatorcontrib><creatorcontrib>Nilakantan, N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lal, A.K.</au><au>Mohanty, S.</au><au>Nilakantan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combinatorial PDEs on Cayley and coset graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2011-11-28</date><risdate>2011</risdate><volume>311</volume><issue>22</issue><spage>2587</spage><epage>2592</epage><pages>2587-2592</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>Building on the work by E. Barletta and S. Dragomir (2002)
[3], this paper solves the initial value problems for the combinatorial heat and wave equations on Cayley and coset graphs.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2011.07.035</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2011-11, Vol.311 (22), p.2587-2592 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_926309463 |
source | ScienceDirect Journals |
subjects | Algebra Cayley graph Characters Combinatorial analysis Combinatorics Combinatorics. Ordered structures Coset graph Drag (hindrance) Exact sciences and technology Fourier transform Geometry Graphs Laplacian Mathematical analysis Mathematics Partial differential equations Sciences and techniques of general use |
title | Combinatorial PDEs on Cayley and coset graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A45%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combinatorial%20PDEs%20on%20Cayley%20and%20coset%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Lal,%20A.K.&rft.date=2011-11-28&rft.volume=311&rft.issue=22&rft.spage=2587&rft.epage=2592&rft.pages=2587-2592&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2011.07.035&rft_dat=%3Cproquest_cross%3E926309463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-4c5fbf23c9107ffa1f0c2a4c94f3fe7b151bc5848fcae5d779108631106bdacd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926309463&rft_id=info:pmid/&rfr_iscdi=true |