Loading…

Evaluated Preference Genetic Algorithm and its Engineering Applications

This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low comput...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136
Main Authors: Liu, Tung Kuan, Wu, Wen Ping, Ho, Min Rong, Chen, Chiu Hung, Chang, Hsin Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483
container_end_page 2136
container_issue SUPPL.3
container_start_page 2129
container_title Key engineering materials
container_volume 467-469
creator Liu, Tung Kuan
Wu, Wen Ping
Ho, Min Rong
Chen, Chiu Hung
Chang, Hsin Yuan
description This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.
doi_str_mv 10.4028/www.scientific.net/KEM.467-469.2129
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926309668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMouH78h948SLtJ2ibNcVnqKq7oQc8hpJPdLN20JlkX_70pK3j2MMwwDM_wPgjdE1xUmDbz4_FYBG3BRWusLhzE-XP7UlSM5xUTBSVUnKEZYYzmgov6PM2YlLloKLtEVyHsMC5JQ-oZWrVfqj-oCF325sGAB6chW0FCWp0t-s3gbdzuM-W6zMaQtW5jHYC3bpMtxrG3WkU7uHCDLozqA9z-9mv08dC-Lx_z9evqablY57rEIuZdxeqqZJphw2mpp9nwGqq65lB1XVqSkqqaE0q4AWE4F0QpTY1hTY2rprxGdyfu6IfPA4Qo9zZo6HvlYDgEKShLjxibLpenS-2HEFI2OXq7V_5bEiwnizJZlH8WZYosk0WZLKYScrKYKO2JEr1yIYLeyt1w8C5l_BfnBzEdhZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309668</pqid></control><display><type>article</type><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><source>Scientific.net Journals</source><creator>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</creator><creatorcontrib>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</creatorcontrib><description>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.467-469.2129</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Genetic algorithms ; Genetics ; Mathematical analysis ; Mathematical models ; Optimization ; Pareto optimality ; Vectors (mathematics)</subject><ispartof>Key engineering materials, 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136</ispartof><rights>2011 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1104?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Tung Kuan</creatorcontrib><creatorcontrib>Wu, Wen Ping</creatorcontrib><creatorcontrib>Ho, Min Rong</creatorcontrib><creatorcontrib>Chen, Chiu Hung</creatorcontrib><creatorcontrib>Chang, Hsin Yuan</creatorcontrib><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><title>Key engineering materials</title><description>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</description><subject>Algorithms</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Vectors (mathematics)</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LxDAQhoMouH78h948SLtJ2ibNcVnqKq7oQc8hpJPdLN20JlkX_70pK3j2MMwwDM_wPgjdE1xUmDbz4_FYBG3BRWusLhzE-XP7UlSM5xUTBSVUnKEZYYzmgov6PM2YlLloKLtEVyHsMC5JQ-oZWrVfqj-oCF325sGAB6chW0FCWp0t-s3gbdzuM-W6zMaQtW5jHYC3bpMtxrG3WkU7uHCDLozqA9z-9mv08dC-Lx_z9evqablY57rEIuZdxeqqZJphw2mpp9nwGqq65lB1XVqSkqqaE0q4AWE4F0QpTY1hTY2rprxGdyfu6IfPA4Qo9zZo6HvlYDgEKShLjxibLpenS-2HEFI2OXq7V_5bEiwnizJZlH8WZYosk0WZLKYScrKYKO2JEr1yIYLeyt1w8C5l_BfnBzEdhZI</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Liu, Tung Kuan</creator><creator>Wu, Wen Ping</creator><creator>Ho, Min Rong</creator><creator>Chen, Chiu Hung</creator><creator>Chang, Hsin Yuan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110101</creationdate><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><author>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tung Kuan</creatorcontrib><creatorcontrib>Wu, Wen Ping</creatorcontrib><creatorcontrib>Ho, Min Rong</creatorcontrib><creatorcontrib>Chen, Chiu Hung</creatorcontrib><creatorcontrib>Chang, Hsin Yuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tung Kuan</au><au>Wu, Wen Ping</au><au>Ho, Min Rong</au><au>Chen, Chiu Hung</au><au>Chang, Hsin Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluated Preference Genetic Algorithm and its Engineering Applications</atitle><jtitle>Key engineering materials</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>467-469</volume><issue>SUPPL.3</issue><spage>2129</spage><epage>2136</epage><pages>2129-2136</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.467-469.2129</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_926309668
source Scientific.net Journals
subjects Algorithms
Genetic algorithms
Genetics
Mathematical analysis
Mathematical models
Optimization
Pareto optimality
Vectors (mathematics)
title Evaluated Preference Genetic Algorithm and its Engineering Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluated%20Preference%20Genetic%20Algorithm%20and%20its%20Engineering%20Applications&rft.jtitle=Key%20engineering%20materials&rft.au=Liu,%20Tung%20Kuan&rft.date=2011-01-01&rft.volume=467-469&rft.issue=SUPPL.3&rft.spage=2129&rft.epage=2136&rft.pages=2129-2136&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.467-469.2129&rft_dat=%3Cproquest_cross%3E926309668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926309668&rft_id=info:pmid/&rfr_iscdi=true