Loading…
Evaluated Preference Genetic Algorithm and its Engineering Applications
This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low comput...
Saved in:
Published in: | Key engineering materials 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483 |
container_end_page | 2136 |
container_issue | SUPPL.3 |
container_start_page | 2129 |
container_title | Key engineering materials |
container_volume | 467-469 |
creator | Liu, Tung Kuan Wu, Wen Ping Ho, Min Rong Chen, Chiu Hung Chang, Hsin Yuan |
description | This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems. |
doi_str_mv | 10.4028/www.scientific.net/KEM.467-469.2129 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926309668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926309668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMouH78h948SLtJ2ibNcVnqKq7oQc8hpJPdLN20JlkX_70pK3j2MMwwDM_wPgjdE1xUmDbz4_FYBG3BRWusLhzE-XP7UlSM5xUTBSVUnKEZYYzmgov6PM2YlLloKLtEVyHsMC5JQ-oZWrVfqj-oCF325sGAB6chW0FCWp0t-s3gbdzuM-W6zMaQtW5jHYC3bpMtxrG3WkU7uHCDLozqA9z-9mv08dC-Lx_z9evqablY57rEIuZdxeqqZJphw2mpp9nwGqq65lB1XVqSkqqaE0q4AWE4F0QpTY1hTY2rprxGdyfu6IfPA4Qo9zZo6HvlYDgEKShLjxibLpenS-2HEFI2OXq7V_5bEiwnizJZlH8WZYosk0WZLKYScrKYKO2JEr1yIYLeyt1w8C5l_BfnBzEdhZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926309668</pqid></control><display><type>article</type><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><source>Scientific.net Journals</source><creator>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</creator><creatorcontrib>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</creatorcontrib><description>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.467-469.2129</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Algorithms ; Genetic algorithms ; Genetics ; Mathematical analysis ; Mathematical models ; Optimization ; Pareto optimality ; Vectors (mathematics)</subject><ispartof>Key engineering materials, 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136</ispartof><rights>2011 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/1104?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Tung Kuan</creatorcontrib><creatorcontrib>Wu, Wen Ping</creatorcontrib><creatorcontrib>Ho, Min Rong</creatorcontrib><creatorcontrib>Chen, Chiu Hung</creatorcontrib><creatorcontrib>Chang, Hsin Yuan</creatorcontrib><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><title>Key engineering materials</title><description>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</description><subject>Algorithms</subject><subject>Genetic algorithms</subject><subject>Genetics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Vectors (mathematics)</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVkE1LxDAQhoMouH78h948SLtJ2ibNcVnqKq7oQc8hpJPdLN20JlkX_70pK3j2MMwwDM_wPgjdE1xUmDbz4_FYBG3BRWusLhzE-XP7UlSM5xUTBSVUnKEZYYzmgov6PM2YlLloKLtEVyHsMC5JQ-oZWrVfqj-oCF325sGAB6chW0FCWp0t-s3gbdzuM-W6zMaQtW5jHYC3bpMtxrG3WkU7uHCDLozqA9z-9mv08dC-Lx_z9evqablY57rEIuZdxeqqZJphw2mpp9nwGqq65lB1XVqSkqqaE0q4AWE4F0QpTY1hTY2rprxGdyfu6IfPA4Qo9zZo6HvlYDgEKShLjxibLpenS-2HEFI2OXq7V_5bEiwnizJZlH8WZYosk0WZLKYScrKYKO2JEr1yIYLeyt1w8C5l_BfnBzEdhZI</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Liu, Tung Kuan</creator><creator>Wu, Wen Ping</creator><creator>Ho, Min Rong</creator><creator>Chen, Chiu Hung</creator><creator>Chang, Hsin Yuan</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110101</creationdate><title>Evaluated Preference Genetic Algorithm and its Engineering Applications</title><author>Liu, Tung Kuan ; Wu, Wen Ping ; Ho, Min Rong ; Chen, Chiu Hung ; Chang, Hsin Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Genetic algorithms</topic><topic>Genetics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tung Kuan</creatorcontrib><creatorcontrib>Wu, Wen Ping</creatorcontrib><creatorcontrib>Ho, Min Rong</creatorcontrib><creatorcontrib>Chen, Chiu Hung</creatorcontrib><creatorcontrib>Chang, Hsin Yuan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tung Kuan</au><au>Wu, Wen Ping</au><au>Ho, Min Rong</au><au>Chen, Chiu Hung</au><au>Chang, Hsin Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluated Preference Genetic Algorithm and its Engineering Applications</atitle><jtitle>Key engineering materials</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>467-469</volume><issue>SUPPL.3</issue><spage>2129</spage><epage>2136</epage><pages>2129-2136</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.467-469.2129</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2011-01, Vol.467-469 (SUPPL.3), p.2129-2136 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_926309668 |
source | Scientific.net Journals |
subjects | Algorithms Genetic algorithms Genetics Mathematical analysis Mathematical models Optimization Pareto optimality Vectors (mathematics) |
title | Evaluated Preference Genetic Algorithm and its Engineering Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A10%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluated%20Preference%20Genetic%20Algorithm%20and%20its%20Engineering%20Applications&rft.jtitle=Key%20engineering%20materials&rft.au=Liu,%20Tung%20Kuan&rft.date=2011-01-01&rft.volume=467-469&rft.issue=SUPPL.3&rft.spage=2129&rft.epage=2136&rft.pages=2129-2136&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.467-469.2129&rft_dat=%3Cproquest_cross%3E926309668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-d465436c60f723c5436f75e4557e4ddf72132a571217fe9f7791aac2ff6850483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926309668&rft_id=info:pmid/&rfr_iscdi=true |