Loading…
Collaborative user modeling for enhanced content filtering in recommender systems
Recommender systems, which have emerged in response to the problem of information overload, provide users with recommendations of content suited to their needs. To provide proper recommendations to users, personalized recommender systems require accurate user models of characteristics, preferences a...
Saved in:
Published in: | Decision Support Systems 2011-11, Vol.51 (4), p.772-781 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recommender systems, which have emerged in response to the problem of information overload, provide users with recommendations of content suited to their needs. To provide proper recommendations to users, personalized recommender systems require accurate user models of characteristics, preferences and needs. In this study, we propose a collaborative approach to user modeling for enhancing personalized recommendations to users. Our approach first discovers useful and meaningful user patterns, and then enriches the personal model with collaboration from other similar users. In order to evaluate the performance of our approach, we compare experimental results with those of a probabilistic learning model, a user model based on collaborative filtering approaches, and a vector space model. We present experimental results that show how our model performs better than existing alternatives. |
---|---|
ISSN: | 0167-9236 1873-5797 |
DOI: | 10.1016/j.dss.2011.01.012 |