Loading…

A note on diameter and the degree sequence of a graph

In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. P...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics letters 2012-02, Vol.25 (2), p.175-178
Main Author: Mukwembi, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3
cites cdi_FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3
container_end_page 178
container_issue 2
container_start_page 175
container_title Applied mathematics letters
container_volume 25
creator Mukwembi, Simon
description In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73–79] on diameter and minimum degree. To be precise, we will prove that if G is a connected graph of order n and minimum degree δ , then its diameter does not exceed 3 ( n − t ) δ + 1 + O ( 1 ) , where t is the number of distinct terms of the degree sequence of G . The featured parameter, t , is attractive in nature and promising; more discoveries on it in relation to other graph parameters are envisaged.
doi_str_mv 10.1016/j.aml.2011.08.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926321990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965911003739</els_id><sourcerecordid>926321990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLe9iKfE2Ww22cVTKX5BwYuel8lm0qakSd1NBf-9G1o8ehoGnnc-HsZuBaQCRPGwTXHXpRkIkYJOQcAZmwldykTlKjtnM9BGJqZQ5pJdhbAFAGmknjG14P0wEh96Xre4o5E8x77m44Z4TWtPxAN9Hah3kWk48rXH_eaaXTTYBbo51Tn7fH76WL4mq_eXt-VilTipzJiopswM5qYS2hUFNhUUOndFjoSqUlg3QmqdYSZBl2VNtYRcx6Co8lJVUz9n98e5ez_EI8Jod21w1HXY03AI1mSFzIQxEElxJJ0fQvDU2L1vd-h_rAA7GbJbGw3ZyZAFbaOhmLk7TcfgsGs89q4Nf8EsXlGAkpF7PHIUX_1uydvg2slI3Xpyo62H9p8tv9YbeTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926321990</pqid></control><display><type>article</type><title>A note on diameter and the degree sequence of a graph</title><source>Elsevier</source><creator>Mukwembi, Simon</creator><creatorcontrib>Mukwembi, Simon</creatorcontrib><description>In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73–79] on diameter and minimum degree. To be precise, we will prove that if G is a connected graph of order n and minimum degree δ , then its diameter does not exceed 3 ( n − t ) δ + 1 + O ( 1 ) , where t is the number of distinct terms of the degree sequence of G . The featured parameter, t , is attractive in nature and promising; more discoveries on it in relation to other graph parameters are envisaged.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2011.08.010</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Degree sequence ; Deltas ; Diameter ; Exact sciences and technology ; Graph theory ; Graphs ; Mathematical analysis ; Mathematics ; Minimum degree ; Numerical analysis ; Numerical analysis. Scientific computation ; Pollack ; Sciences and techniques of general use ; Strengthening ; Trees</subject><ispartof>Applied mathematics letters, 2012-02, Vol.25 (2), p.175-178</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3</citedby><cites>FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24756053$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukwembi, Simon</creatorcontrib><title>A note on diameter and the degree sequence of a graph</title><title>Applied mathematics letters</title><description>In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73–79] on diameter and minimum degree. To be precise, we will prove that if G is a connected graph of order n and minimum degree δ , then its diameter does not exceed 3 ( n − t ) δ + 1 + O ( 1 ) , where t is the number of distinct terms of the degree sequence of G . The featured parameter, t , is attractive in nature and promising; more discoveries on it in relation to other graph parameters are envisaged.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Degree sequence</subject><subject>Deltas</subject><subject>Diameter</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Minimum degree</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Pollack</subject><subject>Sciences and techniques of general use</subject><subject>Strengthening</subject><subject>Trees</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLe9iKfE2Ww22cVTKX5BwYuel8lm0qakSd1NBf-9G1o8ehoGnnc-HsZuBaQCRPGwTXHXpRkIkYJOQcAZmwldykTlKjtnM9BGJqZQ5pJdhbAFAGmknjG14P0wEh96Xre4o5E8x77m44Z4TWtPxAN9Hah3kWk48rXH_eaaXTTYBbo51Tn7fH76WL4mq_eXt-VilTipzJiopswM5qYS2hUFNhUUOndFjoSqUlg3QmqdYSZBl2VNtYRcx6Co8lJVUz9n98e5ez_EI8Jod21w1HXY03AI1mSFzIQxEElxJJ0fQvDU2L1vd-h_rAA7GbJbGw3ZyZAFbaOhmLk7TcfgsGs89q4Nf8EsXlGAkpF7PHIUX_1uydvg2slI3Xpyo62H9p8tv9YbeTY</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Mukwembi, Simon</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>A note on diameter and the degree sequence of a graph</title><author>Mukwembi, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Degree sequence</topic><topic>Deltas</topic><topic>Diameter</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Minimum degree</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Pollack</topic><topic>Sciences and techniques of general use</topic><topic>Strengthening</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukwembi, Simon</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukwembi, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on diameter and the degree sequence of a graph</atitle><jtitle>Applied mathematics letters</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>25</volume><issue>2</issue><spage>175</spage><epage>178</epage><pages>175-178</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this note, we use a technique introduced by Dankelmann and Entringer [P. Dankelmann, R.C. Entringer, Average distance, minimum degree and spanning trees, J. Graph Theory 33 (2000) 1–13] to obtain a strengthening of an old classical theorem by Erdős, Pach, Pollack and Tuza [P. Erdős, J. Pach, R. Pollack, Z. Tuza, Radius, diameter, and minimum degree, J. Combin. Theory B 47 (1989) 73–79] on diameter and minimum degree. To be precise, we will prove that if G is a connected graph of order n and minimum degree δ , then its diameter does not exceed 3 ( n − t ) δ + 1 + O ( 1 ) , where t is the number of distinct terms of the degree sequence of G . The featured parameter, t , is attractive in nature and promising; more discoveries on it in relation to other graph parameters are envisaged.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2011.08.010</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2012-02, Vol.25 (2), p.175-178
issn 0893-9659
1873-5452
language eng
recordid cdi_proquest_miscellaneous_926321990
source Elsevier
subjects Combinatorics
Combinatorics. Ordered structures
Degree sequence
Deltas
Diameter
Exact sciences and technology
Graph theory
Graphs
Mathematical analysis
Mathematics
Minimum degree
Numerical analysis
Numerical analysis. Scientific computation
Pollack
Sciences and techniques of general use
Strengthening
Trees
title A note on diameter and the degree sequence of a graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20diameter%20and%20the%20degree%20sequence%20of%20a%20graph&rft.jtitle=Applied%20mathematics%20letters&rft.au=Mukwembi,%20Simon&rft.date=2012-02-01&rft.volume=25&rft.issue=2&rft.spage=175&rft.epage=178&rft.pages=175-178&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2011.08.010&rft_dat=%3Cproquest_cross%3E926321990%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5f729a49b18c66afb0684c64aea5b5adf13882a230877ded30483591b475bded3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926321990&rft_id=info:pmid/&rfr_iscdi=true