Loading…
Sirt1 deacetylates c-Myc and promotes c-Myc/Max association
The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational mod...
Saved in:
Published in: | The international journal of biochemistry & cell biology 2011-11, Vol.43 (11), p.1573-1581 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3 |
container_end_page | 1581 |
container_issue | 11 |
container_start_page | 1573 |
container_title | The international journal of biochemistry & cell biology |
container_volume | 43 |
creator | Mao, Beibei Zhao, Guowei Lv, Xiang Chen, Hou-Zao Xue, Zheng Yang, Ben Liu, De-Pei Liang, Chih-Chuan |
description | The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both
in vitro and
in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis. |
doi_str_mv | 10.1016/j.biocel.2011.07.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926323621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272511001981</els_id><sourcerecordid>926323621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3</originalsourceid><addsrcrecordid>eNqFkEtLJDEQgIMovtZ_INo3T92mks6jEQQZdHfBwcOs55BJVyTDzESTHnH-_WZo9bh7qqL46vURcg60AQryetHMQ3S4bBgFaKhqKJV75Bi00rXQSuyXnAtVM8XEETnJeUEpBcH4ITlioKkC4MfkZhbSAFWP1uGwXdoBc-Xq6dZVdt1Xrymu4nfpemo_KptzdMEOIa5_kANvlxnPPuMpeX64_zP5VT8-_fw9uXusXQtqqIE62dvWl8A9dqrremDU2XZOdScAUKDurSyskszrTrbo_JxyzbG11nt-Sq7GueWctw3mwaxCLp8v7RrjJpuOSc64ZPBfsuzTQndKF7IdSZdizgm9eU1hZdPWADU7v2ZhRr9m59dQZYrf0nbxuWAzX2H_3fQltACXI-BtNPYlhWyeZ2WCLPI1tGJH3I4EFmXvAZPJLuDaYR8SusH0Mfz7hr84j5Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>895858978</pqid></control><display><type>article</type><title>Sirt1 deacetylates c-Myc and promotes c-Myc/Max association</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mao, Beibei ; Zhao, Guowei ; Lv, Xiang ; Chen, Hou-Zao ; Xue, Zheng ; Yang, Ben ; Liu, De-Pei ; Liang, Chih-Chuan</creator><creatorcontrib>Mao, Beibei ; Zhao, Guowei ; Lv, Xiang ; Chen, Hou-Zao ; Xue, Zheng ; Yang, Ben ; Liu, De-Pei ; Liang, Chih-Chuan</creatorcontrib><description>The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both
in vitro and
in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/j.biocel.2011.07.006</identifier><identifier>PMID: 21807113</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acetylation ; Activation ; apoptosis ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Biological ; c-Myc ; carcinogenesis ; Cell Cycle Checkpoints ; Cell Differentiation - genetics ; Cell Proliferation ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Gene expression ; histone deacetylase ; Histones ; Human ; Humans ; Immunoprecipitation ; Inhibitors ; K562 Cells ; Leukemia, Erythroblastic, Acute - genetics ; Leukemia, Erythroblastic, Acute - metabolism ; Leukemias ; Max ; neoplasm cells ; neoplasms ; oncogene proteins ; Plasmids ; post-translational modification ; Proliferation ; Promoter Regions, Genetic ; Protein Binding ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; RNA interference ; Signal Transduction - genetics ; Sirt1 ; Sirtuin 1 - genetics ; Sirtuin 1 - metabolism ; Surgical implants ; transcription factors ; Transcriptional Activation ; Transfection</subject><ispartof>The international journal of biochemistry & cell biology, 2011-11, Vol.43 (11), p.1573-1581</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3</citedby><cites>FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21807113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Beibei</creatorcontrib><creatorcontrib>Zhao, Guowei</creatorcontrib><creatorcontrib>Lv, Xiang</creatorcontrib><creatorcontrib>Chen, Hou-Zao</creatorcontrib><creatorcontrib>Xue, Zheng</creatorcontrib><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Liu, De-Pei</creatorcontrib><creatorcontrib>Liang, Chih-Chuan</creatorcontrib><title>Sirt1 deacetylates c-Myc and promotes c-Myc/Max association</title><title>The international journal of biochemistry & cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both
in vitro and
in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.</description><subject>Acetylation</subject><subject>Activation</subject><subject>apoptosis</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Biological</subject><subject>c-Myc</subject><subject>carcinogenesis</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Proliferation</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Gene expression</subject><subject>histone deacetylase</subject><subject>Histones</subject><subject>Human</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Inhibitors</subject><subject>K562 Cells</subject><subject>Leukemia, Erythroblastic, Acute - genetics</subject><subject>Leukemia, Erythroblastic, Acute - metabolism</subject><subject>Leukemias</subject><subject>Max</subject><subject>neoplasm cells</subject><subject>neoplasms</subject><subject>oncogene proteins</subject><subject>Plasmids</subject><subject>post-translational modification</subject><subject>Proliferation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Structure, Tertiary</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>RNA interference</subject><subject>Signal Transduction - genetics</subject><subject>Sirt1</subject><subject>Sirtuin 1 - genetics</subject><subject>Sirtuin 1 - metabolism</subject><subject>Surgical implants</subject><subject>transcription factors</subject><subject>Transcriptional Activation</subject><subject>Transfection</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLJDEQgIMovtZ_INo3T92mks6jEQQZdHfBwcOs55BJVyTDzESTHnH-_WZo9bh7qqL46vURcg60AQryetHMQ3S4bBgFaKhqKJV75Bi00rXQSuyXnAtVM8XEETnJeUEpBcH4ITlioKkC4MfkZhbSAFWP1uGwXdoBc-Xq6dZVdt1Xrymu4nfpemo_KptzdMEOIa5_kANvlxnPPuMpeX64_zP5VT8-_fw9uXusXQtqqIE62dvWl8A9dqrremDU2XZOdScAUKDurSyskszrTrbo_JxyzbG11nt-Sq7GueWctw3mwaxCLp8v7RrjJpuOSc64ZPBfsuzTQndKF7IdSZdizgm9eU1hZdPWADU7v2ZhRr9m59dQZYrf0nbxuWAzX2H_3fQltACXI-BtNPYlhWyeZ2WCLPI1tGJH3I4EFmXvAZPJLuDaYR8SusH0Mfz7hr84j5Ug</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Mao, Beibei</creator><creator>Zhao, Guowei</creator><creator>Lv, Xiang</creator><creator>Chen, Hou-Zao</creator><creator>Xue, Zheng</creator><creator>Yang, Ben</creator><creator>Liu, De-Pei</creator><creator>Liang, Chih-Chuan</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111101</creationdate><title>Sirt1 deacetylates c-Myc and promotes c-Myc/Max association</title><author>Mao, Beibei ; Zhao, Guowei ; Lv, Xiang ; Chen, Hou-Zao ; Xue, Zheng ; Yang, Ben ; Liu, De-Pei ; Liang, Chih-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylation</topic><topic>Activation</topic><topic>apoptosis</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Biological</topic><topic>c-Myc</topic><topic>carcinogenesis</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Proliferation</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Gene expression</topic><topic>histone deacetylase</topic><topic>Histones</topic><topic>Human</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Inhibitors</topic><topic>K562 Cells</topic><topic>Leukemia, Erythroblastic, Acute - genetics</topic><topic>Leukemia, Erythroblastic, Acute - metabolism</topic><topic>Leukemias</topic><topic>Max</topic><topic>neoplasm cells</topic><topic>neoplasms</topic><topic>oncogene proteins</topic><topic>Plasmids</topic><topic>post-translational modification</topic><topic>Proliferation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Structure, Tertiary</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>RNA interference</topic><topic>Signal Transduction - genetics</topic><topic>Sirt1</topic><topic>Sirtuin 1 - genetics</topic><topic>Sirtuin 1 - metabolism</topic><topic>Surgical implants</topic><topic>transcription factors</topic><topic>Transcriptional Activation</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Beibei</creatorcontrib><creatorcontrib>Zhao, Guowei</creatorcontrib><creatorcontrib>Lv, Xiang</creatorcontrib><creatorcontrib>Chen, Hou-Zao</creatorcontrib><creatorcontrib>Xue, Zheng</creatorcontrib><creatorcontrib>Yang, Ben</creatorcontrib><creatorcontrib>Liu, De-Pei</creatorcontrib><creatorcontrib>Liang, Chih-Chuan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The international journal of biochemistry & cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Beibei</au><au>Zhao, Guowei</au><au>Lv, Xiang</au><au>Chen, Hou-Zao</au><au>Xue, Zheng</au><au>Yang, Ben</au><au>Liu, De-Pei</au><au>Liang, Chih-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirt1 deacetylates c-Myc and promotes c-Myc/Max association</atitle><jtitle>The international journal of biochemistry & cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>43</volume><issue>11</issue><spage>1573</spage><epage>1581</epage><pages>1573-1581</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>The c-Myc oncoprotein plays critical roles in multiple biological processes by controlling cell proliferation, apoptosis, differentiation, and metabolism. Especially, c-Myc is frequently overexpressed in many human cancers and widely involved in tumorigenesis. However, how the post-translational modifications, especially acetylation of c-Myc, contribute to its activity in the leukemia cells remains largely unknown. Sirt1, a NAD-dependent class III histone deacetylase, has a paradoxical role in tumorigenesis by deacetylating several transcription factors, including p53, E2F1 and forkhead proteins. In this study, we show that Sirt1 interacts physically with the C-terminus of c-Myc and deacetylates c-Myc both
in vitro and
in vivo. Moreover, the deacetylation of c-Myc by Sirt1 promotes its association with Max, a partner essential for its activation, thereby facilitating c-Myc transactivation activity on hTERT promoter. Finally, inhibition of endogenous Sirt1 in K562 cells by either RNAi or its inhibitor NAM causes the overall decrease of c-Myc target genes expression, including hTERT, cyclinD2 and LDHA, which further suppress cell proliferation and arrest cell cycle at G1/S phase. Thus, our results demonstrate the positive effect of Sirt1 on c-Myc activity by efficiently enhancing c-Myc/Max association in human leukemia cell line K562, suggesting a potential role of Sirt1 in tumorigenesis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>21807113</pmid><doi>10.1016/j.biocel.2011.07.006</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1357-2725 |
ispartof | The international journal of biochemistry & cell biology, 2011-11, Vol.43 (11), p.1573-1581 |
issn | 1357-2725 1878-5875 |
language | eng |
recordid | cdi_proquest_miscellaneous_926323621 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Acetylation Activation apoptosis Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - genetics Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Biological c-Myc carcinogenesis Cell Cycle Checkpoints Cell Differentiation - genetics Cell Proliferation Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Gene expression histone deacetylase Histones Human Humans Immunoprecipitation Inhibitors K562 Cells Leukemia, Erythroblastic, Acute - genetics Leukemia, Erythroblastic, Acute - metabolism Leukemias Max neoplasm cells neoplasms oncogene proteins Plasmids post-translational modification Proliferation Promoter Regions, Genetic Protein Binding Protein Processing, Post-Translational Protein Structure, Tertiary Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism RNA interference Signal Transduction - genetics Sirt1 Sirtuin 1 - genetics Sirtuin 1 - metabolism Surgical implants transcription factors Transcriptional Activation Transfection |
title | Sirt1 deacetylates c-Myc and promotes c-Myc/Max association |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirt1%20deacetylates%20c-Myc%20and%20promotes%20c-Myc/Max%20association&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Mao,%20Beibei&rft.date=2011-11-01&rft.volume=43&rft.issue=11&rft.spage=1573&rft.epage=1581&rft.pages=1573-1581&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/j.biocel.2011.07.006&rft_dat=%3Cproquest_cross%3E926323621%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-10c6da4f0c63fe9799d120ca4b089511e5e8da6417762f8964ecfb0383e4aaff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=895858978&rft_id=info:pmid/21807113&rfr_iscdi=true |