Loading…

Modeling heating effects in nanoscale devices: the present and the future

In this review paper we give an overview on the present state of the art in modeling heat transport in nanoscale devices and what issues we need to address for better and more successful modeling of future devices. We begin with a brief overview of the heat transport in materials and explain why the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational electronics 2008-06, Vol.7 (2), p.66-93
Main Authors: Vasileska, D., Raleva, K., Goodnick, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this review paper we give an overview on the present state of the art in modeling heat transport in nanoscale devices and what issues we need to address for better and more successful modeling of future devices. We begin with a brief overview of the heat transport in materials and explain why the simple Fourier law fails in nanoscale devices. Then we elaborate on attempts to model heat transport in nanostructures from both perspectives: nanomaterials (the work of Narumanchi and co-workers) and nanodevices (the work of Majumdar, Pop, Goodson and recently Vasileska, Raleva and Goodnick). We use our own simulation results which we have used to examine heat transport in nanoscaling devices to point out some important issues such as the fact that thermal degradation does not increase as we decrease feature size due to the more pronounced non-stationary transport and ballistic transport effects in nanoscale devices. We also point out that instead of using SOI, if one uses Silicon on Diamond technology there is much less heat degradation and better spread of the heat in the Diamond material. We also point out that tools for thermal modeling of nanoscale devices need to be improved from the present state of the art as 3D tools are needed, for example, to simulate heat transport and electrical transport in a FinFET device. Better models than the energy balance equations for the acoustic and optical phonons what we presently use in our simulators are also welcomed. The ultimate goal is to design the tool that can be efficient enough but at the same time can simulate most accurately both electrons and phonons within the particle pictures by solving their corresponding Boltzmann transport equations self-consistently. Investigations in integration of Peltier coolers with CMOS technology are also welcomed and much needed to reduce the problem of heat dissipation in nanoscale devices and interconnects.
ISSN:1569-8025
1572-8137
DOI:10.1007/s10825-008-0254-y