Loading…

Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines

► The use of Permutation Entropy for automated seizure detection is investigated. ► Seizure EEG is characterized by lower Permutation Entropy values compared to normal EEG. ► Classification greater than 90% is obtained for discriminating seizure versus normal EEG. ► The low complexity of Permutation...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2012, Vol.39 (1), p.202-209
Main Authors: Nicolaou, Nicoletta, Georgiou, Julius
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943
cites cdi_FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943
container_end_page 209
container_issue 1
container_start_page 202
container_title Expert systems with applications
container_volume 39
creator Nicolaou, Nicoletta
Georgiou, Julius
description ► The use of Permutation Entropy for automated seizure detection is investigated. ► Seizure EEG is characterized by lower Permutation Entropy values compared to normal EEG. ► Classification greater than 90% is obtained for discriminating seizure versus normal EEG. ► The low complexity of Permutation Entropy encourages its utilization in an automated seizure detection system. The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.
doi_str_mv 10.1016/j.eswa.2011.07.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926325957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417411009705</els_id><sourcerecordid>926325957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943</originalsourceid><addsrcrecordid>eNp9kE1P3DAQQK0KpC6UP9CTb3BJGH8kTiQuCJYPCVSkAlfLa0_Aq2wc7GwR_74Oy5nTSKP3RppHyG8GJQNWn65LTO-m5MBYCaoEaH6QBWuUKGrVij2ygLZShWRK_iQHKa0BmAJQC-IucUI7-TDQ0FEcfY_j5C3FPm9jwMHi-Gr68BLNhq5MQkcz-oBxs53Mp7YcMjd-UDM4-nc7jiFO9DnLIdJ7Y1_9gOkX2e9Mn_Doax6Sp6vl48VNcffn-vbi_K6wUrCp4EZxWHGQrqsEIoBkthZQI29AdBIbU1UOnHRWmW5VmUYyMCics7aVq1aKQ3K8uzvG8LbFNOmNTxb73gwYtkm3vBa8yiUyefItyWrFhKorPqN8h9oYUorY6TH6jYkfmoGe4-u1nuPrOb4GpXP8LJ3tJMzv_vMYdbJ-jul8zG20C_47_T9ar483</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671376527</pqid></control><display><type>article</type><title>Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines</title><source>ScienceDirect Freedom Collection</source><creator>Nicolaou, Nicoletta ; Georgiou, Julius</creator><creatorcontrib>Nicolaou, Nicoletta ; Georgiou, Julius</creatorcontrib><description>► The use of Permutation Entropy for automated seizure detection is investigated. ► Seizure EEG is characterized by lower Permutation Entropy values compared to normal EEG. ► Classification greater than 90% is obtained for discriminating seizure versus normal EEG. ► The low complexity of Permutation Entropy encourages its utilization in an automated seizure detection system. The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2011.07.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Classification ; Electroencephalogram (EEG) ; Entropy ; Epilepsy ; Expert systems ; Permutation Entropy (PE) ; Permutations ; Polyethylenes ; Segments ; Seizing ; Seizure ; Support Vector Machine (SVM) ; Support vector machines</subject><ispartof>Expert systems with applications, 2012, Vol.39 (1), p.202-209</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943</citedby><cites>FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Nicolaou, Nicoletta</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><title>Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines</title><title>Expert systems with applications</title><description>► The use of Permutation Entropy for automated seizure detection is investigated. ► Seizure EEG is characterized by lower Permutation Entropy values compared to normal EEG. ► Classification greater than 90% is obtained for discriminating seizure versus normal EEG. ► The low complexity of Permutation Entropy encourages its utilization in an automated seizure detection system. The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.</description><subject>Classification</subject><subject>Electroencephalogram (EEG)</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Expert systems</subject><subject>Permutation Entropy (PE)</subject><subject>Permutations</subject><subject>Polyethylenes</subject><subject>Segments</subject><subject>Seizing</subject><subject>Seizure</subject><subject>Support Vector Machine (SVM)</subject><subject>Support vector machines</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQQK0KpC6UP9CTb3BJGH8kTiQuCJYPCVSkAlfLa0_Aq2wc7GwR_74Oy5nTSKP3RppHyG8GJQNWn65LTO-m5MBYCaoEaH6QBWuUKGrVij2ygLZShWRK_iQHKa0BmAJQC-IucUI7-TDQ0FEcfY_j5C3FPm9jwMHi-Gr68BLNhq5MQkcz-oBxs53Mp7YcMjd-UDM4-nc7jiFO9DnLIdJ7Y1_9gOkX2e9Mn_Doax6Sp6vl48VNcffn-vbi_K6wUrCp4EZxWHGQrqsEIoBkthZQI29AdBIbU1UOnHRWmW5VmUYyMCics7aVq1aKQ3K8uzvG8LbFNOmNTxb73gwYtkm3vBa8yiUyefItyWrFhKorPqN8h9oYUorY6TH6jYkfmoGe4-u1nuPrOb4GpXP8LJ3tJMzv_vMYdbJ-jul8zG20C_47_T9ar483</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Nicolaou, Nicoletta</creator><creator>Georgiou, Julius</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TK</scope></search><sort><creationdate>2012</creationdate><title>Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines</title><author>Nicolaou, Nicoletta ; Georgiou, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classification</topic><topic>Electroencephalogram (EEG)</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Expert systems</topic><topic>Permutation Entropy (PE)</topic><topic>Permutations</topic><topic>Polyethylenes</topic><topic>Segments</topic><topic>Seizing</topic><topic>Seizure</topic><topic>Support Vector Machine (SVM)</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolaou, Nicoletta</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Neurosciences Abstracts</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolaou, Nicoletta</au><au>Georgiou, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines</atitle><jtitle>Expert systems with applications</jtitle><date>2012</date><risdate>2012</risdate><volume>39</volume><issue>1</issue><spage>202</spage><epage>209</epage><pages>202-209</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► The use of Permutation Entropy for automated seizure detection is investigated. ► Seizure EEG is characterized by lower Permutation Entropy values compared to normal EEG. ► Classification greater than 90% is obtained for discriminating seizure versus normal EEG. ► The low complexity of Permutation Entropy encourages its utilization in an automated seizure detection system. The electroencephalogram (EEG) has proven a valuable tool in the study and detection of epilepsy. This paper investigates for the first time the use of Permutation Entropy (PE) as a feature for automated epileptic seizure detection. A Support Vector Machine (SVM) is used to classify segments of normal and epileptic EEG based on PE values. The proposed system utilizes the fact that the EEG during epileptic seizures is characterized by lower PE than normal EEG. It is shown that average sensitivity of 94.38% and average specificity of 93.23% is obtained by using PE as a feature to characterize epileptic and seizure-free EEG, while 100% sensitivity and specificity were also obtained in single-trial classifications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2011.07.008</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2012, Vol.39 (1), p.202-209
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_926325957
source ScienceDirect Freedom Collection
subjects Classification
Electroencephalogram (EEG)
Entropy
Epilepsy
Expert systems
Permutation Entropy (PE)
Permutations
Polyethylenes
Segments
Seizing
Seizure
Support Vector Machine (SVM)
Support vector machines
title Detection of epileptic electroencephalogram based on Permutation Entropy and Support Vector Machines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20epileptic%20electroencephalogram%20based%20on%20Permutation%20Entropy%20and%20Support%20Vector%20Machines&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Nicolaou,%20Nicoletta&rft.date=2012&rft.volume=39&rft.issue=1&rft.spage=202&rft.epage=209&rft.pages=202-209&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2011.07.008&rft_dat=%3Cproquest_cross%3E926325957%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-2a720b204df53ee0041c6306e2803f4e8a55d0d4dc7afb5a8410ae3ddcc94b943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671376527&rft_id=info:pmid/&rfr_iscdi=true