Loading…
On estimation of a heteroscedastic measurement error model under heavy-tailed distributions
It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural...
Saved in:
Published in: | Computational statistics & data analysis 2012-02, Vol.56 (2), p.438-448 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923 |
container_end_page | 448 |
container_issue | 2 |
container_start_page | 438 |
container_title | Computational statistics & data analysis |
container_volume | 56 |
creator | Cao, Chun-Zheng Lin, Jin-Guan Zhu, Xiao-Xin |
description | It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease. |
doi_str_mv | 10.1016/j.csda.2011.08.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926326938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947311003100</els_id><sourcerecordid>926326938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</originalsourceid><addsrcrecordid>eNp9UT1rHDEQFSGGXJz8gVRqQqrdaCWtpIU0wcR2gsFNXKUQOmmEdezHRdIe3L_PLGdcphi9Ab33mHlDyKeOtR3r1NdD60twLWdd1zLTIrwhu85o3mjR87dkhyTdDFKLd-R9KQfGGJfa7Mifx5lCqWlyNS0zXSJ19Bkq5KV4CA5_PJ3AlTXDBHOlkPOS6bQEGOk6B8jIdqdzU10aIdCQSs1pv25m5QO5im4s8PEFr8nT7Y_fN_fNw-Pdz5vvD42XfKiNMr3eRwlRRmmUl3tvYlTglfJ9CIL56IwKUqmB8Rh6JbSLoPXgDQ_eDFxcky8X32Ne_q64jZ0STj-OboZlLXbgSnA1CINMfmF63K9kiPaYcfV8th2zW5D2YLcg7RakZcYioOjXRZThCP5VAQAbdXb2ZIXrFT5nLFRyhLS1WEcsKYyV0tjnOqHZ55dZXfFujNnNPpVXUzxK3zM-IO_bhQcY3ClBtsUnmPEmKYOvNizpfzP_A2NWpFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926326938</pqid></control><display><type>article</type><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</creator><creatorcontrib>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</creatorcontrib><description>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2011.08.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Asymptotic properties ; Computer simulation ; Data processing ; EM algorithm ; Equation error ; Error analysis ; Errors ; Exact sciences and technology ; Exact solutions ; General topics ; Heteroscedastic measurement error ; Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error ; Mathematical analysis ; Mathematics ; Maximum likelihood ; Medical sciences ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Scale mixtures of normal distribution ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics & data analysis, 2012-02, Vol.56 (2), p.438-448</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</citedby><cites>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947311003100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755029$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a56_3ay_3a2012_3ai_3a2_3ap_3a438-448.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Chun-Zheng</creatorcontrib><creatorcontrib>Lin, Jin-Guan</creatorcontrib><creatorcontrib>Zhu, Xiao-Xin</creatorcontrib><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><title>Computational statistics & data analysis</title><description>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</description><subject>Applications</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>EM algorithm</subject><subject>Equation error</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>General topics</subject><subject>Heteroscedastic measurement error</subject><subject>Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Medical sciences</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Scale mixtures of normal distribution</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UT1rHDEQFSGGXJz8gVRqQqrdaCWtpIU0wcR2gsFNXKUQOmmEdezHRdIe3L_PLGdcphi9Ab33mHlDyKeOtR3r1NdD60twLWdd1zLTIrwhu85o3mjR87dkhyTdDFKLd-R9KQfGGJfa7Mifx5lCqWlyNS0zXSJ19Bkq5KV4CA5_PJ3AlTXDBHOlkPOS6bQEGOk6B8jIdqdzU10aIdCQSs1pv25m5QO5im4s8PEFr8nT7Y_fN_fNw-Pdz5vvD42XfKiNMr3eRwlRRmmUl3tvYlTglfJ9CIL56IwKUqmB8Rh6JbSLoPXgDQ_eDFxcky8X32Ne_q64jZ0STj-OboZlLXbgSnA1CINMfmF63K9kiPaYcfV8th2zW5D2YLcg7RakZcYioOjXRZThCP5VAQAbdXb2ZIXrFT5nLFRyhLS1WEcsKYyV0tjnOqHZ55dZXfFujNnNPpVXUzxK3zM-IO_bhQcY3ClBtsUnmPEmKYOvNizpfzP_A2NWpFI</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Cao, Chun-Zheng</creator><creator>Lin, Jin-Guan</creator><creator>Zhu, Xiao-Xin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><author>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>EM algorithm</topic><topic>Equation error</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>General topics</topic><topic>Heteroscedastic measurement error</topic><topic>Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Medical sciences</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Scale mixtures of normal distribution</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Chun-Zheng</creatorcontrib><creatorcontrib>Lin, Jin-Guan</creatorcontrib><creatorcontrib>Zhu, Xiao-Xin</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Chun-Zheng</au><au>Lin, Jin-Guan</au><au>Zhu, Xiao-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>56</volume><issue>2</issue><spage>438</spage><epage>448</epage><pages>438-448</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2011.08.011</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2012-02, Vol.56 (2), p.438-448 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_926326938 |
source | ScienceDirect: Mathematics Backfile; ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Decision Sciences [YDT] |
subjects | Applications Asymptotic properties Computer simulation Data processing EM algorithm Equation error Error analysis Errors Exact sciences and technology Exact solutions General topics Heteroscedastic measurement error Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error Mathematical analysis Mathematics Maximum likelihood Medical sciences Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Scale mixtures of normal distribution Sciences and techniques of general use Statistics |
title | On estimation of a heteroscedastic measurement error model under heavy-tailed distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20estimation%20of%20a%20heteroscedastic%20measurement%20error%20model%20under%20heavy-tailed%20distributions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Cao,%20Chun-Zheng&rft.date=2012-02-01&rft.volume=56&rft.issue=2&rft.spage=438&rft.epage=448&rft.pages=438-448&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2011.08.011&rft_dat=%3Cproquest_cross%3E926326938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926326938&rft_id=info:pmid/&rfr_iscdi=true |