Loading…

On estimation of a heteroscedastic measurement error model under heavy-tailed distributions

It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2012-02, Vol.56 (2), p.438-448
Main Authors: Cao, Chun-Zheng, Lin, Jin-Guan, Zhu, Xiao-Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923
cites cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923
container_end_page 448
container_issue 2
container_start_page 438
container_title Computational statistics & data analysis
container_volume 56
creator Cao, Chun-Zheng
Lin, Jin-Guan
Zhu, Xiao-Xin
description It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.
doi_str_mv 10.1016/j.csda.2011.08.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926326938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947311003100</els_id><sourcerecordid>926326938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</originalsourceid><addsrcrecordid>eNp9UT1rHDEQFSGGXJz8gVRqQqrdaCWtpIU0wcR2gsFNXKUQOmmEdezHRdIe3L_PLGdcphi9Ab33mHlDyKeOtR3r1NdD60twLWdd1zLTIrwhu85o3mjR87dkhyTdDFKLd-R9KQfGGJfa7Mifx5lCqWlyNS0zXSJ19Bkq5KV4CA5_PJ3AlTXDBHOlkPOS6bQEGOk6B8jIdqdzU10aIdCQSs1pv25m5QO5im4s8PEFr8nT7Y_fN_fNw-Pdz5vvD42XfKiNMr3eRwlRRmmUl3tvYlTglfJ9CIL56IwKUqmB8Rh6JbSLoPXgDQ_eDFxcky8X32Ne_q64jZ0STj-OboZlLXbgSnA1CINMfmF63K9kiPaYcfV8th2zW5D2YLcg7RakZcYioOjXRZThCP5VAQAbdXb2ZIXrFT5nLFRyhLS1WEcsKYyV0tjnOqHZ55dZXfFujNnNPpVXUzxK3zM-IO_bhQcY3ClBtsUnmPEmKYOvNizpfzP_A2NWpFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926326938</pqid></control><display><type>article</type><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Journals</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</creator><creatorcontrib>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</creatorcontrib><description>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2011.08.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Asymptotic properties ; Computer simulation ; Data processing ; EM algorithm ; Equation error ; Error analysis ; Errors ; Exact sciences and technology ; Exact solutions ; General topics ; Heteroscedastic measurement error ; Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error ; Mathematical analysis ; Mathematics ; Maximum likelihood ; Medical sciences ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Scale mixtures of normal distribution ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2012-02, Vol.56 (2), p.438-448</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</citedby><cites>FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947311003100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24755029$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a56_3ay_3a2012_3ai_3a2_3ap_3a438-448.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Chun-Zheng</creatorcontrib><creatorcontrib>Lin, Jin-Guan</creatorcontrib><creatorcontrib>Zhu, Xiao-Xin</creatorcontrib><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><title>Computational statistics &amp; data analysis</title><description>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</description><subject>Applications</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>EM algorithm</subject><subject>Equation error</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>General topics</subject><subject>Heteroscedastic measurement error</subject><subject>Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum likelihood</subject><subject>Medical sciences</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Scale mixtures of normal distribution</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UT1rHDEQFSGGXJz8gVRqQqrdaCWtpIU0wcR2gsFNXKUQOmmEdezHRdIe3L_PLGdcphi9Ab33mHlDyKeOtR3r1NdD60twLWdd1zLTIrwhu85o3mjR87dkhyTdDFKLd-R9KQfGGJfa7Mifx5lCqWlyNS0zXSJ19Bkq5KV4CA5_PJ3AlTXDBHOlkPOS6bQEGOk6B8jIdqdzU10aIdCQSs1pv25m5QO5im4s8PEFr8nT7Y_fN_fNw-Pdz5vvD42XfKiNMr3eRwlRRmmUl3tvYlTglfJ9CIL56IwKUqmB8Rh6JbSLoPXgDQ_eDFxcky8X32Ne_q64jZ0STj-OboZlLXbgSnA1CINMfmF63K9kiPaYcfV8th2zW5D2YLcg7RakZcYioOjXRZThCP5VAQAbdXb2ZIXrFT5nLFRyhLS1WEcsKYyV0tjnOqHZ55dZXfFujNnNPpVXUzxK3zM-IO_bhQcY3ClBtsUnmPEmKYOvNizpfzP_A2NWpFI</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Cao, Chun-Zheng</creator><creator>Lin, Jin-Guan</creator><creator>Zhu, Xiao-Xin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120201</creationdate><title>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</title><author>Cao, Chun-Zheng ; Lin, Jin-Guan ; Zhu, Xiao-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>EM algorithm</topic><topic>Equation error</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>General topics</topic><topic>Heteroscedastic measurement error</topic><topic>Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum likelihood</topic><topic>Medical sciences</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Scale mixtures of normal distribution</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Chun-Zheng</creatorcontrib><creatorcontrib>Lin, Jin-Guan</creatorcontrib><creatorcontrib>Zhu, Xiao-Xin</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Chun-Zheng</au><au>Lin, Jin-Guan</au><au>Zhu, Xiao-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On estimation of a heteroscedastic measurement error model under heavy-tailed distributions</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>56</volume><issue>2</issue><spage>438</spage><epage>448</epage><pages>438-448</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>It is common in epidemiology and other fields that the analyzing data is collected with error-prone observations and the variances of the measurement errors change across observations. Heteroscedastic measurement error (HME) models have been developed for such data. This paper extends the structural HME model to situations in which the observations jointly follow scale mixtures of normal (SMN) distribution. We develop the EM algorithm to compute the maximum likelihood estimates for the model with and without equation error respectively, and derive closed forms of asymptotic variances. We also conduct simulations to verify the effective of the EM estimates and confirm their robust behaviors based on heavy-tailed SMN distributions. A practical application is reported for the data from the WHO MONICA Project on cardiovascular disease.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2011.08.011</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2012-02, Vol.56 (2), p.438-448
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_926326938
source ScienceDirect: Mathematics Backfile; ScienceDirect Journals; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Decision Sciences [YDT]
subjects Applications
Asymptotic properties
Computer simulation
Data processing
EM algorithm
Equation error
Error analysis
Errors
Exact sciences and technology
Exact solutions
General topics
Heteroscedastic measurement error
Heteroscedastic measurement error Scale mixtures of normal distribution Maximum likelihood EM algorithm Equation error
Mathematical analysis
Mathematics
Maximum likelihood
Medical sciences
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Scale mixtures of normal distribution
Sciences and techniques of general use
Statistics
title On estimation of a heteroscedastic measurement error model under heavy-tailed distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20estimation%20of%20a%20heteroscedastic%20measurement%20error%20model%20under%20heavy-tailed%20distributions&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Cao,%20Chun-Zheng&rft.date=2012-02-01&rft.volume=56&rft.issue=2&rft.spage=438&rft.epage=448&rft.pages=438-448&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2011.08.011&rft_dat=%3Cproquest_cross%3E926326938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-6857bf4ef4f486c4bc8ff6ec66c5dd30cfa86d466902fd5637afe779c82dc8923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926326938&rft_id=info:pmid/&rfr_iscdi=true