Loading…
Carbon-loaded porous composites produced by matrix carbonization of poly(vinylidene fluoride)
Using poly(vinylidene fluoride) (PVDF) carbonization at 750° C in fine-particle silica and its mixtures with graphite, we have prepared carbon-loaded porous composites which offer benzene absorption from 0.90 to 1.52 ml/g, compressive strength of 6 MPa, and Brinell hardness of up to 18 MPa. We obser...
Saved in:
Published in: | Inorganic materials 2008-07, Vol.44 (7), p.697-704 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using poly(vinylidene fluoride) (PVDF) carbonization at 750° C in fine-particle silica and its mixtures with graphite, we have prepared carbon-loaded porous composites which offer benzene absorption from 0.90 to 1.52 ml/g, compressive strength of 6 MPa, and Brinell hardness of up to 18 MPa. We observed the formation of various nanostructures (spheres, spherical segments, and layered platelets) and sizes (several to hundred nanometers). X-ray photoelectron and energy dispersive x-ray spectroscopy data indicate the presence of C-C, C =C, CO, COO, and CHF groups on the carbon surface. X-ray emission spectroscopy data show that the silica matrix composite prepared via PVDF carbonization contains small carbon clusters weakly bonded to the matrix. The silica/graphite matrix composite contains multilayer carbon films strongly bonded to the matrix. The O
K
α
spectra of both composites are similar to the spectrum of pure SiO
2
. |
---|---|
ISSN: | 0020-1685 1608-3172 |
DOI: | 10.1134/S0020168508070054 |