Loading…

Making Sense by Building Sense: Kindergarten Children’s Construction and Understanding of Adaptive Robot Behaviors

This study explores young children’s ability to construct and explain adaptive behaviors of a behaving artifact, an autonomous mobile robot with sensors. A central component of the behavior construction environment is the RoboGan software that supports children’s construction of spatiotemporal event...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computers for mathematical learning 2010-07, Vol.15 (2), p.99-127
Main Authors: Mioduser, David, Levy, Sharona T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study explores young children’s ability to construct and explain adaptive behaviors of a behaving artifact, an autonomous mobile robot with sensors. A central component of the behavior construction environment is the RoboGan software that supports children’s construction of spatiotemporal events with an a-temporal rule structure. Six kindergarten children participated in the study, three girls and three boys. Activities and interviews were conducted individually along five sessions that included increasingly complex construction tasks. It was found that all of the children succeeded in constructing most such behaviors, debugging their constructions in a relatively small number of cycles. An adult’s assistance in noticing relevant features of the problem was necessary for the more complex tasks that involved four complementary rules. The spatial scaffolding afforded by the RoboGan interface was well used by the children, as they consistently used partial backtracking strategies to improve their constructions, and employed modular construction strategies in the more complex tasks. The children’s explanations following their construction usually capped at one rule, or two condition-action couples, one rule short of their final constructions. With respect to tasks that involved describing a demonstrated robot’s behavior, in describing their constructions, explanations tended to be more rule-based, complex and mechanistic. These results are discussed with respect to the importance of making such physical/computational environments available to young children, and support of young children’s learning about such intelligent systems and reasoning in developmentally-advanced forms.
ISSN:1382-3892
2211-1662
1573-1766
2211-1670
DOI:10.1007/s10758-010-9163-9