Loading…
Brain-Machine Interfaces for Motor Control: A Guide for Neuroscience Clinicians
With the growing interdependence between medicine and technology, the prospect of connecting machines to the human brain is rapidly being realized. The field of neuroprosthetics is transitioning from the proof of concept stage to the development of advanced clinical treatments. In one area of brain-...
Saved in:
Published in: | Canadian journal of neurological sciences 2012-01, Vol.39 (1), p.11-22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the growing interdependence between medicine and technology, the prospect of connecting machines to the human brain is rapidly being realized. The field of neuroprosthetics is transitioning from the proof of concept stage to the development of advanced clinical treatments. In one area of brain-machine interfaces (BMIs) related to the motor system, also termed ‘motor neuroprosthetics’, research successes with implanted microelectrodes in animals have demonstrated immense potential for restoring motor deficits. Early human trials have also begun, with some success but also highlighting several technical challenges. Here we review the concepts and anatomy underlying motor BMI designs, review their early use in clinical applications, and offer a framework to evaluate these technologies in order to predict their eventual clinical utility. Ultimately, we hope to help neuroscience clinicians understand and participate in this burgeoning field. |
---|---|
ISSN: | 0317-1671 2057-0155 |
DOI: | 10.1017/S0317167100012622 |