Loading…
Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks
We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of s...
Saved in:
Published in: | Bulletin of mathematical biology 2012-04, Vol.74 (4), p.769-802 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3 |
container_end_page | 802 |
container_issue | 4 |
container_start_page | 769 |
container_title | Bulletin of mathematical biology |
container_volume | 74 |
creator | DeVille, R. E. Lee Peskin, Charles S. |
description | We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network. |
doi_str_mv | 10.1007/s11538-011-9674-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926642052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926642052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3</originalsourceid><addsrcrecordid>eNp9kUtPAyEYRYnR2Fr9AW7MxI1uRj8eMwzLpvWZRhfqmtABtHVmqNCJ9t9Lba2Jia7gg3MvIQehQwxnGICfB4wzWqSAcSpyzlLYQl2cERInINuoCyBIWhAGHbQXwhRiRlCxizoE8yyjAnfR7cOiKV-8axaJanTSD5vROp_cmTbuVZUMF42qJ2VIhsZOGqMT1yQDV88q8xGh-bvzr2Ef7VhVBXOwXnvo6fLicXCdju6vbgb9UVoyoPMUW0vGWnMwNNcgCpOrMRBrhaBWcaZZPM81oYSwrFAlVzRT3FBWaJZRxkvaQyer3pl3b60Jc1lPQmmqSjXGtUEKkueMQEYiefoviSmhBTAslujxL3TqWh-__tVHacExixBeQaV3IXhj5cxPauUXEoNcGpErIzIakUsjEmLmaF3cjmujN4lvBREgKyDEq-bZ-J-X_279BHOQlLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926338714</pqid></control><display><type>article</type><title>Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks</title><source>Springer Link</source><creator>DeVille, R. E. Lee ; Peskin, Charles S.</creator><creatorcontrib>DeVille, R. E. Lee ; Peskin, Charles S.</creatorcontrib><description>We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-011-9674-0</identifier><identifier>PMID: 21755391</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Cell Biology ; Computer Simulation ; Humans ; Life Sciences ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Original Article ; Stochastic Processes</subject><ispartof>Bulletin of mathematical biology, 2012-04, Vol.74 (4), p.769-802</ispartof><rights>Society for Mathematical Biology 2011</rights><rights>Society for Mathematical Biology 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3</citedby><cites>FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21755391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Peskin, Charles S.</creatorcontrib><title>Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.</description><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Original Article</subject><subject>Stochastic Processes</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPAyEYRYnR2Fr9AW7MxI1uRj8eMwzLpvWZRhfqmtABtHVmqNCJ9t9Lba2Jia7gg3MvIQehQwxnGICfB4wzWqSAcSpyzlLYQl2cERInINuoCyBIWhAGHbQXwhRiRlCxizoE8yyjAnfR7cOiKV-8axaJanTSD5vROp_cmTbuVZUMF42qJ2VIhsZOGqMT1yQDV88q8xGh-bvzr2Ef7VhVBXOwXnvo6fLicXCdju6vbgb9UVoyoPMUW0vGWnMwNNcgCpOrMRBrhaBWcaZZPM81oYSwrFAlVzRT3FBWaJZRxkvaQyer3pl3b60Jc1lPQmmqSjXGtUEKkueMQEYiefoviSmhBTAslujxL3TqWh-__tVHacExixBeQaV3IXhj5cxPauUXEoNcGpErIzIakUsjEmLmaF3cjmujN4lvBREgKyDEq-bZ-J-X_279BHOQlLc</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>DeVille, R. E. Lee</creator><creator>Peskin, Charles S.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks</title><author>DeVille, R. E. Lee ; Peskin, Charles S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Original Article</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DeVille, R. E. Lee</creatorcontrib><creatorcontrib>Peskin, Charles S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DeVille, R. E. Lee</au><au>Peskin, Charles S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>74</volume><issue>4</issue><spage>769</spage><epage>802</epage><pages>769-802</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><pmid>21755391</pmid><doi>10.1007/s11538-011-9674-0</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2012-04, Vol.74 (4), p.769-802 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_926642052 |
source | Springer Link |
subjects | Cell Biology Computer Simulation Humans Life Sciences Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Models, Neurological Nerve Net - physiology Neurons - physiology Original Article Stochastic Processes |
title | Synchrony and Asynchrony for Neuronal Dynamics Defined on Complex Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrony%20and%20Asynchrony%20for%20Neuronal%20Dynamics%20Defined%20on%20Complex%20Networks&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=DeVille,%20R.%20E.%20Lee&rft.date=2012-04-01&rft.volume=74&rft.issue=4&rft.spage=769&rft.epage=802&rft.pages=769-802&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-011-9674-0&rft_dat=%3Cproquest_cross%3E926642052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-1ff2bdd70e36d098e6ab02ff993fa74d4e366d2322458ac7a35a7e348d45347c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926338714&rft_id=info:pmid/21755391&rfr_iscdi=true |