Loading…
Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for ea...
Saved in:
Published in: | Computer methods and programs in biomedicine 2012-03, Vol.105 (3), p.257-267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3 |
container_end_page | 267 |
container_issue | 3 |
container_start_page | 257 |
container_title | Computer methods and programs in biomedicine |
container_volume | 105 |
creator | Kutlu, Yakup Kuntalp, Damla |
description | Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats. |
doi_str_mv | 10.1016/j.cmpb.2011.10.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926883810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260711002665</els_id><sourcerecordid>926883810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</originalsourceid><addsrcrecordid>eNqFkkGLEzEUx4Mobrf6BTxILuJpal4yycyACFJ3V2FBQWWPIZN52aa2k5pkxP32m6FVwYMeksDL7_8Sfgkhz4CtgIF6tV3Z_aFfcQZQCivG-AOygLbhVSOVfEgWBeoqrlhzRs5T2rJCSKkekzPOmZRd1y7IzSWaPEWk-DNHY7MPI3Uh0ov1Fd2gibkv-4lOyY-3dONvNxhpiEOZUzbZp-xtosHRm0_vqA3onLcex5yekEfO7BI-Pa1L8vXy4sv6fXX98erD-u11ZeuG50pIJngveY-2BlBoahgaUStgDupBdtzJxhgDTvSi7pTBFtXAFPYNbxvLB7EkL499DzF8nzBlvffJ4m5nRgxT0h1XbStaYP8noWVCsDKWhB9JG0NKEZ0-RL838U4D07N5vdWzeT2bn2vFawk9P7Wf-j0OvyO_VBfgxQkwyZqdi2a0Pv3hpIJW1FC410cOi7YfHqNOs1KLg49osx6C__c93vwVtzs_-nLiN7zDtA1THMuDaNCJa6Y_z39k_iIAJa2UFPfiorVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918033003</pqid></control><display><type>article</type><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><source>Elsevier</source><creator>Kutlu, Yakup ; Kuntalp, Damla</creator><creatorcontrib>Kutlu, Yakup ; Kuntalp, Damla</creatorcontrib><description>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2011.10.002</identifier><identifier>PMID: 22055998</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Arrhythmia ; Arrhythmias, Cardiac - classification ; Arrhythmias, Cardiac - diagnosis ; Biological and medical sciences ; Classification ; Databases, Factual ; ECG beat ; Electrocardiography - methods ; Heart Rate - physiology ; Heartbeat ; Higher order statistics ; Humans ; Internal Medicine ; k-nearest neighbors ; Medical sciences ; Other ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Signal Processing, Computer-Assisted ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Wavelet packet decomposition</subject><ispartof>Computer methods and programs in biomedicine, 2012-03, Vol.105 (3), p.257-267</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</citedby><cites>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25618341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22055998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Kuntalp, Damla</creatorcontrib><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac - classification</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Databases, Factual</subject><subject>ECG beat</subject><subject>Electrocardiography - methods</subject><subject>Heart Rate - physiology</subject><subject>Heartbeat</subject><subject>Higher order statistics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>k-nearest neighbors</subject><subject>Medical sciences</subject><subject>Other</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Wavelet packet decomposition</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkkGLEzEUx4Mobrf6BTxILuJpal4yycyACFJ3V2FBQWWPIZN52aa2k5pkxP32m6FVwYMeksDL7_8Sfgkhz4CtgIF6tV3Z_aFfcQZQCivG-AOygLbhVSOVfEgWBeoqrlhzRs5T2rJCSKkekzPOmZRd1y7IzSWaPEWk-DNHY7MPI3Uh0ov1Fd2gibkv-4lOyY-3dONvNxhpiEOZUzbZp-xtosHRm0_vqA3onLcex5yekEfO7BI-Pa1L8vXy4sv6fXX98erD-u11ZeuG50pIJngveY-2BlBoahgaUStgDupBdtzJxhgDTvSi7pTBFtXAFPYNbxvLB7EkL499DzF8nzBlvffJ4m5nRgxT0h1XbStaYP8noWVCsDKWhB9JG0NKEZ0-RL838U4D07N5vdWzeT2bn2vFawk9P7Wf-j0OvyO_VBfgxQkwyZqdi2a0Pv3hpIJW1FC410cOi7YfHqNOs1KLg49osx6C__c93vwVtzs_-nLiN7zDtA1THMuDaNCJa6Y_z39k_iIAJa2UFPfiorVU</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Kutlu, Yakup</creator><creator>Kuntalp, Damla</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120301</creationdate><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><author>Kutlu, Yakup ; Kuntalp, Damla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac - classification</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Databases, Factual</topic><topic>ECG beat</topic><topic>Electrocardiography - methods</topic><topic>Heart Rate - physiology</topic><topic>Heartbeat</topic><topic>Higher order statistics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>k-nearest neighbors</topic><topic>Medical sciences</topic><topic>Other</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Wavelet packet decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Kuntalp, Damla</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu, Yakup</au><au>Kuntalp, Damla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>105</volume><issue>3</issue><spage>257</spage><epage>267</epage><pages>257-267</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>22055998</pmid><doi>10.1016/j.cmpb.2011.10.002</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2012-03, Vol.105 (3), p.257-267 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_926883810 |
source | Elsevier |
subjects | Algorithms Arrhythmia Arrhythmias, Cardiac - classification Arrhythmias, Cardiac - diagnosis Biological and medical sciences Classification Databases, Factual ECG beat Electrocardiography - methods Heart Rate - physiology Heartbeat Higher order statistics Humans Internal Medicine k-nearest neighbors Medical sciences Other Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Signal Processing, Computer-Assisted Technology. Biomaterials. Equipments. Material. Instrumentation Wavelet packet decomposition |
title | Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20for%20ECG%20heartbeats%20using%20higher%20order%20statistics%20of%20WPD%20coefficients&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Kutlu,%20Yakup&rft.date=2012-03-01&rft.volume=105&rft.issue=3&rft.spage=257&rft.epage=267&rft.pages=257-267&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2011.10.002&rft_dat=%3Cproquest_cross%3E926883810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=918033003&rft_id=info:pmid/22055998&rfr_iscdi=true |