Loading…

Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients

Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for ea...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods and programs in biomedicine 2012-03, Vol.105 (3), p.257-267
Main Authors: Kutlu, Yakup, Kuntalp, Damla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3
cites cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3
container_end_page 267
container_issue 3
container_start_page 257
container_title Computer methods and programs in biomedicine
container_volume 105
creator Kutlu, Yakup
Kuntalp, Damla
description Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.
doi_str_mv 10.1016/j.cmpb.2011.10.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_926883810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260711002665</els_id><sourcerecordid>926883810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</originalsourceid><addsrcrecordid>eNqFkkGLEzEUx4Mobrf6BTxILuJpal4yycyACFJ3V2FBQWWPIZN52aa2k5pkxP32m6FVwYMeksDL7_8Sfgkhz4CtgIF6tV3Z_aFfcQZQCivG-AOygLbhVSOVfEgWBeoqrlhzRs5T2rJCSKkekzPOmZRd1y7IzSWaPEWk-DNHY7MPI3Uh0ov1Fd2gibkv-4lOyY-3dONvNxhpiEOZUzbZp-xtosHRm0_vqA3onLcex5yekEfO7BI-Pa1L8vXy4sv6fXX98erD-u11ZeuG50pIJngveY-2BlBoahgaUStgDupBdtzJxhgDTvSi7pTBFtXAFPYNbxvLB7EkL499DzF8nzBlvffJ4m5nRgxT0h1XbStaYP8noWVCsDKWhB9JG0NKEZ0-RL838U4D07N5vdWzeT2bn2vFawk9P7Wf-j0OvyO_VBfgxQkwyZqdi2a0Pv3hpIJW1FC410cOi7YfHqNOs1KLg49osx6C__c93vwVtzs_-nLiN7zDtA1THMuDaNCJa6Y_z39k_iIAJa2UFPfiorVU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918033003</pqid></control><display><type>article</type><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><source>Elsevier</source><creator>Kutlu, Yakup ; Kuntalp, Damla</creator><creatorcontrib>Kutlu, Yakup ; Kuntalp, Damla</creatorcontrib><description>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2011.10.002</identifier><identifier>PMID: 22055998</identifier><language>eng</language><publisher>Kidlington: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Arrhythmia ; Arrhythmias, Cardiac - classification ; Arrhythmias, Cardiac - diagnosis ; Biological and medical sciences ; Classification ; Databases, Factual ; ECG beat ; Electrocardiography - methods ; Heart Rate - physiology ; Heartbeat ; Higher order statistics ; Humans ; Internal Medicine ; k-nearest neighbors ; Medical sciences ; Other ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Signal Processing, Computer-Assisted ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Wavelet packet decomposition</subject><ispartof>Computer methods and programs in biomedicine, 2012-03, Vol.105 (3), p.257-267</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2011 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</citedby><cites>FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25618341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22055998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Kuntalp, Damla</creatorcontrib><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac - classification</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Databases, Factual</subject><subject>ECG beat</subject><subject>Electrocardiography - methods</subject><subject>Heart Rate - physiology</subject><subject>Heartbeat</subject><subject>Higher order statistics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>k-nearest neighbors</subject><subject>Medical sciences</subject><subject>Other</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Wavelet packet decomposition</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkkGLEzEUx4Mobrf6BTxILuJpal4yycyACFJ3V2FBQWWPIZN52aa2k5pkxP32m6FVwYMeksDL7_8Sfgkhz4CtgIF6tV3Z_aFfcQZQCivG-AOygLbhVSOVfEgWBeoqrlhzRs5T2rJCSKkekzPOmZRd1y7IzSWaPEWk-DNHY7MPI3Uh0ov1Fd2gibkv-4lOyY-3dONvNxhpiEOZUzbZp-xtosHRm0_vqA3onLcex5yekEfO7BI-Pa1L8vXy4sv6fXX98erD-u11ZeuG50pIJngveY-2BlBoahgaUStgDupBdtzJxhgDTvSi7pTBFtXAFPYNbxvLB7EkL499DzF8nzBlvffJ4m5nRgxT0h1XbStaYP8noWVCsDKWhB9JG0NKEZ0-RL838U4D07N5vdWzeT2bn2vFawk9P7Wf-j0OvyO_VBfgxQkwyZqdi2a0Pv3hpIJW1FC410cOi7YfHqNOs1KLg49osx6C__c93vwVtzs_-nLiN7zDtA1THMuDaNCJa6Y_z39k_iIAJa2UFPfiorVU</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Kutlu, Yakup</creator><creator>Kuntalp, Damla</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120301</creationdate><title>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</title><author>Kutlu, Yakup ; Kuntalp, Damla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac - classification</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Databases, Factual</topic><topic>ECG beat</topic><topic>Electrocardiography - methods</topic><topic>Heart Rate - physiology</topic><topic>Heartbeat</topic><topic>Higher order statistics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>k-nearest neighbors</topic><topic>Medical sciences</topic><topic>Other</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Wavelet packet decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutlu, Yakup</creatorcontrib><creatorcontrib>Kuntalp, Damla</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutlu, Yakup</au><au>Kuntalp, Damla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>105</volume><issue>3</issue><spage>257</spage><epage>267</epage><pages>257-267</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract This paper describes feature extraction methods using higher order statistics (HOS) of wavelet packet decomposition (WPD) coefficients for the purpose of automatic heartbeat recognition. The method consists of three stages. First, the wavelet package coefficients (WPC) are calculated for each different type of ECG beat. Then, higher order statistics of WPC are derived. Finally, the obtained feature set is used as input to a classifier, which is based on k -NN algorithm. The MIT-BIH arrhythmia database is used to obtain the ECG records used in this study. All heartbeats in the arrhythmia database are grouped into five main heartbeat classes. The classification accuracy of the proposed system is measured by average sensitivity of 90%, average selectivity of 92% and average specificity of 98%. The results show that HOS of WPC as features are highly discriminative for the classification of different arrhythmic ECG beats.</abstract><cop>Kidlington</cop><pub>Elsevier Ireland Ltd</pub><pmid>22055998</pmid><doi>10.1016/j.cmpb.2011.10.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2012-03, Vol.105 (3), p.257-267
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_926883810
source Elsevier
subjects Algorithms
Arrhythmia
Arrhythmias, Cardiac - classification
Arrhythmias, Cardiac - diagnosis
Biological and medical sciences
Classification
Databases, Factual
ECG beat
Electrocardiography - methods
Heart Rate - physiology
Heartbeat
Higher order statistics
Humans
Internal Medicine
k-nearest neighbors
Medical sciences
Other
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Signal Processing, Computer-Assisted
Technology. Biomaterials. Equipments. Material. Instrumentation
Wavelet packet decomposition
title Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20extraction%20for%20ECG%20heartbeats%20using%20higher%20order%20statistics%20of%20WPD%20coefficients&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Kutlu,%20Yakup&rft.date=2012-03-01&rft.volume=105&rft.issue=3&rft.spage=257&rft.epage=267&rft.pages=257-267&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2011.10.002&rft_dat=%3Cproquest_cross%3E926883810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-35032b52bec4116ea41d734610f14d592f57aaa1f3b3496ae8e6d06eb7287c2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=918033003&rft_id=info:pmid/22055998&rfr_iscdi=true