Loading…

Characterization of Candida sp. NY7122, a novel pentose-fermenting soil yeast

Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (D-xylose and L-arabinose). NY7122 was closely related to Candida...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2012-02, Vol.39 (2), p.307-315
Main Authors: Watanabe, Itsuki, Ando, Akira, Nakamura, Toshihide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (D-xylose and L-arabinose). NY7122 was closely related to Candida subhashii on the basis of the results of molecular identification using the sequence in the D1/D2 domains of 26S rDNA and 5.8S-internal transcribed spacer region. NY7122 produced at least 7.40 and 3.86 g l−1 ethanol from 20 g l−1 D-xylose and L-arabinose within 24 h. NY7122 could produce ethanol from pentose and hexose sugars at 37°C. The highest ethanol productivity of NY7122 was achieved under a low pH condition (pH 3.5). Fermentation of mixed sugars (50 g l−1 glucose, 20 g l−1 D-xylose, and 10 g l−1 L-arabinose) resulted in a maximum ethanol concentration of 27.3 g l−1 for the NY7122 strain versus 25.1 g l−1 for Scheffersomyces stipitis. This is the first study to report that Candida sp. NY7122 from a soil environment could produce ethanol from both D-xylose and L-arabinose.
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-011-1033-5