Loading…

No Colavita effect: equal auditory and visual processing in people with one eye

Previous research has shown that people with one eye have enhanced spatial vision implying intra-modal compensation for their loss of binocularity. The current experiments investigate whether monocular blindness from unilateral eye enucleation may lead to cross-modal sensory compensation for the los...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 2012-02, Vol.216 (3), p.367-373
Main Authors: Moro, Stefania S., Steeves, Jennifer K. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous research has shown that people with one eye have enhanced spatial vision implying intra-modal compensation for their loss of binocularity. The current experiments investigate whether monocular blindness from unilateral eye enucleation may lead to cross-modal sensory compensation for the loss of one eye. We measured speeded detection and discrimination of audiovisual targets presented as a stream of paired objects and familiar sounds in a group of individuals with monocular enucleation compared to controls viewing binocularly or monocularly. In Experiment 1, participants detected the presence of auditory, visual or audiovisual targets. All participant groups were equally able to detect the targets. In Experiment 2, participants discriminated between the visual, auditory or bimodal (audiovisual) targets. Both control groups showed the Colavita effect, that is, preferential processing of visual over auditory information for the bimodal stimuli. The monocular enucleation group, however, showed no Colavita effect, and further, they demonstrated equal processing of visual and auditory stimuli. This finding suggests a lack of visual dominance and equivalent auditory and visual processing in people with one eye. This may be an adaptive form of sensory compensation for the loss of one eye and could result from recruitment of deafferented visual cortical areas by inputs from other senses.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-011-2940-4