Loading…

Cloning and Characterization of a Novel Oligoalginate Lyase from a Newly Isolated Bacterium Sphingomonas sp. MJ-3

A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region seque...

Full description

Saved in:
Bibliographic Details
Published in:Marine biotechnology (New York, N.Y.) N.Y.), 2012-04, Vol.14 (2), p.189-202
Main Authors: Park, Hwan Hee, Kam, Natania, Lee, Eun Yeol, Kim, Hee Sook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bacterium possessing alginate-degrading activity was isolated from marine brown seaweed soup liquefied by salted and fermented anchovy. The isolated strain was designated as Sphingomonas sp. MJ-3 based on the analyses of 16S ribosomal DNA sequences, 16S-23S internal transcribed spacer region sequences, biochemical characteristics, and cellular fatty acid composition. A novel alginate lyase gene was cloned from genomic DNA library and then expressed in Escherichia coli. When the deduced amino acid sequence was compared with the sequences on the databases, interestingly, the cloned gene product was predicted to consist of AlgL (alginate lyase L)-like and heparinase-like protein domain. The MJ-3 alginate lyase gene shared below 27.0% sequence identity with exolytic alginate lyase of Sphingomonas sp. A1. The optimal pH and temperature for the recombinant MJ-3 alginate lyase were 6.5 and 50°C, respectively. The final degradation products of alginate oligosaccharides were analyzed by electrospray ionization mass spectrometry and proved to be alginate monosaccharides. Based on the results, the recombinant alginate lyase from Sphingomonas sp. MJ-3 is regarded as an oligoalginate lyase that can degrade oligoalginate and alginate into alginate monosaccharides.
ISSN:1436-2228
1436-2236
DOI:10.1007/s10126-011-9402-7