Loading…

Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia

Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent c...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (46), p.18802-18807
Main Authors: Sejersted, Yngve, Hildrestrand, Gunn A, Kunke, David, Rolseth, Veslemøy, Krokeide, Silje Z, Neurauter, Christine G, Suganthan, Rajikala, Atneosen-Åsegg, Monica, Fleming, Aaron M, Saugstad, Ola D, Burrows, Cynthia J, Luna, Luisa, Bjørås, Magnar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23
cites cdi_FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23
container_end_page 18807
container_issue 46
container_start_page 18802
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Sejersted, Yngve
Hildrestrand, Gunn A
Kunke, David
Rolseth, Veslemøy
Krokeide, Silje Z
Neurauter, Christine G
Suganthan, Rajikala
Atneosen-Åsegg, Monica
Fleming, Aaron M
Saugstad, Ola D
Burrows, Cynthia J
Luna, Luisa
Bjørås, Magnar
description Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.
doi_str_mv 10.1073/pnas.1106880108
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_926895987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23058555</jstor_id><sourcerecordid>23058555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23</originalsourceid><addsrcrecordid>eNpdkkFv1DAQRiMEokvhzAmIuACHtDOOndgXpKoUWKkqByhXy3acXS9JnNoJIv-eRLt0gZMP8-bJnz8nyXOEM4QyP-87Fc8QoeAcEPiDZIUgMCuogIfJCoCUGaeEniRPYtwBgGAcHicnhEDBSoqrRF91le9G01gVbfp9vV5njfth0zx9e2Ndk79LP9xcpJtmMj5OzcL0wbd-sDHt7Bj8xnY2upi6rhqNrVI9pdup97-cylw0W9s69TR5VKsm2meH8zS5_Xj17fJzdv3l0_ry4jozjJAh03lliFC21ghaIOak4LUBoipDK840FLQqRAlGoGIlK7UShCiiy4prjYbkp8n7vbcfdWsrY7shqEb2wbUqTNIrJ_-ddG4rN_6nzAkKpGwWvDkIgr8bbRxkO2ewTaM668coxXwjwQQvZ_L1f-TOj6Gb00kBDFnBCzpD53vIBB9jsPX9VRDk0p5c2pPH9uaNl38nuOf_1DUD6QFYNo86LmkhcbYsr_Bij-zi4MNRkQPjjC0hX-3ntfJSbYKL8vYrAaTz7-CIlOa_ATZ1s6Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905156864</pqid></control><display><type>article</type><title>Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Sejersted, Yngve ; Hildrestrand, Gunn A ; Kunke, David ; Rolseth, Veslemøy ; Krokeide, Silje Z ; Neurauter, Christine G ; Suganthan, Rajikala ; Atneosen-Åsegg, Monica ; Fleming, Aaron M ; Saugstad, Ola D ; Burrows, Cynthia J ; Luna, Luisa ; Bjørås, Magnar</creator><creatorcontrib>Sejersted, Yngve ; Hildrestrand, Gunn A ; Kunke, David ; Rolseth, Veslemøy ; Krokeide, Silje Z ; Neurauter, Christine G ; Suganthan, Rajikala ; Atneosen-Åsegg, Monica ; Fleming, Aaron M ; Saugstad, Ola D ; Burrows, Cynthia J ; Luna, Luisa ; Bjørås, Magnar</creatorcontrib><description>Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1106880108</identifier><identifier>PMID: 22065741</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Brain ; Brain hypoxia ; Cell Differentiation ; Cell Proliferation ; Cerebral hemispheres ; Cytotoxicity ; Differentiation ; DNA Damage ; DNA glycosylase ; DNA repair ; DNA, Single-Stranded ; Embryos ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonuclease ; glycosylases ; Hydantoins - metabolism ; Hypoxia ; Hypoxia - genetics ; Ischemia ; Ischemia - genetics ; Lesions ; Mice ; Mice, Knockout ; Microglia ; Mitosis ; Multipotent stem cells ; Mutagenesis ; Neostriatum ; Neural stem cells ; Neural Stem Cells - cytology ; Neurogenesis ; Neurons ; Neuropathology ; Neuroscience ; Physical training ; Progenitor cells ; Rodents ; single-stranded DNA ; Stem cells ; Stem Cells - cytology ; Stress</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (46), p.18802-18807</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 15, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23</citedby><cites>FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23058555$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23058555$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22065741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sejersted, Yngve</creatorcontrib><creatorcontrib>Hildrestrand, Gunn A</creatorcontrib><creatorcontrib>Kunke, David</creatorcontrib><creatorcontrib>Rolseth, Veslemøy</creatorcontrib><creatorcontrib>Krokeide, Silje Z</creatorcontrib><creatorcontrib>Neurauter, Christine G</creatorcontrib><creatorcontrib>Suganthan, Rajikala</creatorcontrib><creatorcontrib>Atneosen-Åsegg, Monica</creatorcontrib><creatorcontrib>Fleming, Aaron M</creatorcontrib><creatorcontrib>Saugstad, Ola D</creatorcontrib><creatorcontrib>Burrows, Cynthia J</creatorcontrib><creatorcontrib>Luna, Luisa</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><title>Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain hypoxia</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Cerebral hemispheres</subject><subject>Cytotoxicity</subject><subject>Differentiation</subject><subject>DNA Damage</subject><subject>DNA glycosylase</subject><subject>DNA repair</subject><subject>DNA, Single-Stranded</subject><subject>Embryos</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonuclease</subject><subject>glycosylases</subject><subject>Hydantoins - metabolism</subject><subject>Hypoxia</subject><subject>Hypoxia - genetics</subject><subject>Ischemia</subject><subject>Ischemia - genetics</subject><subject>Lesions</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microglia</subject><subject>Mitosis</subject><subject>Multipotent stem cells</subject><subject>Mutagenesis</subject><subject>Neostriatum</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neuropathology</subject><subject>Neuroscience</subject><subject>Physical training</subject><subject>Progenitor cells</subject><subject>Rodents</subject><subject>single-stranded DNA</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stress</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkkFv1DAQRiMEokvhzAmIuACHtDOOndgXpKoUWKkqByhXy3acXS9JnNoJIv-eRLt0gZMP8-bJnz8nyXOEM4QyP-87Fc8QoeAcEPiDZIUgMCuogIfJCoCUGaeEniRPYtwBgGAcHicnhEDBSoqrRF91le9G01gVbfp9vV5njfth0zx9e2Ndk79LP9xcpJtmMj5OzcL0wbd-sDHt7Bj8xnY2upi6rhqNrVI9pdup97-cylw0W9s69TR5VKsm2meH8zS5_Xj17fJzdv3l0_ry4jozjJAh03lliFC21ghaIOak4LUBoipDK840FLQqRAlGoGIlK7UShCiiy4prjYbkp8n7vbcfdWsrY7shqEb2wbUqTNIrJ_-ddG4rN_6nzAkKpGwWvDkIgr8bbRxkO2ewTaM668coxXwjwQQvZ_L1f-TOj6Gb00kBDFnBCzpD53vIBB9jsPX9VRDk0p5c2pPH9uaNl38nuOf_1DUD6QFYNo86LmkhcbYsr_Bij-zi4MNRkQPjjC0hX-3ntfJSbYKL8vYrAaTz7-CIlOa_ATZ1s6Y</recordid><startdate>20111115</startdate><enddate>20111115</enddate><creator>Sejersted, Yngve</creator><creator>Hildrestrand, Gunn A</creator><creator>Kunke, David</creator><creator>Rolseth, Veslemøy</creator><creator>Krokeide, Silje Z</creator><creator>Neurauter, Christine G</creator><creator>Suganthan, Rajikala</creator><creator>Atneosen-Åsegg, Monica</creator><creator>Fleming, Aaron M</creator><creator>Saugstad, Ola D</creator><creator>Burrows, Cynthia J</creator><creator>Luna, Luisa</creator><creator>Bjørås, Magnar</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20111115</creationdate><title>Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia</title><author>Sejersted, Yngve ; Hildrestrand, Gunn A ; Kunke, David ; Rolseth, Veslemøy ; Krokeide, Silje Z ; Neurauter, Christine G ; Suganthan, Rajikala ; Atneosen-Åsegg, Monica ; Fleming, Aaron M ; Saugstad, Ola D ; Burrows, Cynthia J ; Luna, Luisa ; Bjørås, Magnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain hypoxia</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Cerebral hemispheres</topic><topic>Cytotoxicity</topic><topic>Differentiation</topic><topic>DNA Damage</topic><topic>DNA glycosylase</topic><topic>DNA repair</topic><topic>DNA, Single-Stranded</topic><topic>Embryos</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonuclease</topic><topic>glycosylases</topic><topic>Hydantoins - metabolism</topic><topic>Hypoxia</topic><topic>Hypoxia - genetics</topic><topic>Ischemia</topic><topic>Ischemia - genetics</topic><topic>Lesions</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microglia</topic><topic>Mitosis</topic><topic>Multipotent stem cells</topic><topic>Mutagenesis</topic><topic>Neostriatum</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neuropathology</topic><topic>Neuroscience</topic><topic>Physical training</topic><topic>Progenitor cells</topic><topic>Rodents</topic><topic>single-stranded DNA</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sejersted, Yngve</creatorcontrib><creatorcontrib>Hildrestrand, Gunn A</creatorcontrib><creatorcontrib>Kunke, David</creatorcontrib><creatorcontrib>Rolseth, Veslemøy</creatorcontrib><creatorcontrib>Krokeide, Silje Z</creatorcontrib><creatorcontrib>Neurauter, Christine G</creatorcontrib><creatorcontrib>Suganthan, Rajikala</creatorcontrib><creatorcontrib>Atneosen-Åsegg, Monica</creatorcontrib><creatorcontrib>Fleming, Aaron M</creatorcontrib><creatorcontrib>Saugstad, Ola D</creatorcontrib><creatorcontrib>Burrows, Cynthia J</creatorcontrib><creatorcontrib>Luna, Luisa</creatorcontrib><creatorcontrib>Bjørås, Magnar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sejersted, Yngve</au><au>Hildrestrand, Gunn A</au><au>Kunke, David</au><au>Rolseth, Veslemøy</au><au>Krokeide, Silje Z</au><au>Neurauter, Christine G</au><au>Suganthan, Rajikala</au><au>Atneosen-Åsegg, Monica</au><au>Fleming, Aaron M</au><au>Saugstad, Ola D</au><au>Burrows, Cynthia J</au><au>Luna, Luisa</au><au>Bjørås, Magnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-15</date><risdate>2011</risdate><volume>108</volume><issue>46</issue><spage>18802</spage><epage>18807</epage><pages>18802-18807</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22065741</pmid><doi>10.1073/pnas.1106880108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (46), p.18802-18807
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_926895987
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Biological Sciences
Brain
Brain hypoxia
Cell Differentiation
Cell Proliferation
Cerebral hemispheres
Cytotoxicity
Differentiation
DNA Damage
DNA glycosylase
DNA repair
DNA, Single-Stranded
Embryos
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Endonuclease
glycosylases
Hydantoins - metabolism
Hypoxia
Hypoxia - genetics
Ischemia
Ischemia - genetics
Lesions
Mice
Mice, Knockout
Microglia
Mitosis
Multipotent stem cells
Mutagenesis
Neostriatum
Neural stem cells
Neural Stem Cells - cytology
Neurogenesis
Neurons
Neuropathology
Neuroscience
Physical training
Progenitor cells
Rodents
single-stranded DNA
Stem cells
Stem Cells - cytology
Stress
title Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endonuclease%20VIII-like%203%20(Neil3)%20DNA%20glycosylase%20promotes%20neurogenesis%20induced%20by%20hypoxia-ischemia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sejersted,%20Yngve&rft.date=2011-11-15&rft.volume=108&rft.issue=46&rft.spage=18802&rft.epage=18807&rft.pages=18802-18807&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1106880108&rft_dat=%3Cjstor_proqu%3E23058555%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-b3dc29aefb10b9113268fc02adc4d85b064d6970c91a5757ba922a2b7d8bb1c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=905156864&rft_id=info:pmid/22065741&rft_jstor_id=23058555&rfr_iscdi=true