Loading…
Antimalarial activity of 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) and its carboxylic acid derivatives
Abstract Malaria is one of the world's deadliest diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to most of the antimalarial drugs used today. We previously reported the in vitro and in vivo antimalarial potencies of 1,2,6,7-tetraoxaspiro[7.11]no...
Saved in:
Published in: | Parasitology international 2011-12, Vol.60 (4), p.488-492 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Malaria is one of the world's deadliest diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to most of the antimalarial drugs used today. We previously reported the in vitro and in vivo antimalarial potencies of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) and 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Plasmodium falciparum and Plasmodium berghei parasites. To improve water-solubility for synthetic peroxides, a variety of cyclic peroxides having carboxyl functionality was prepared based on the antimalarial candidate, N-251, and their antimalarial activities were determined. The reactions of N-89 and its derivatives with Fe(II) demonstrated a highly efficient formation of the corresponding carbon radical which may be suspected as a key for the antiparasitic activity. |
---|---|
ISSN: | 1383-5769 1873-0329 |
DOI: | 10.1016/j.parint.2011.08.017 |