Loading…
General second-order scalar-tensor theory and self-tuning
Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a...
Saved in:
Published in: | Physical review letters 2012-01, Vol.108 (5), p.051101-051101, Article 051101 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313 |
container_end_page | 051101 |
container_issue | 5 |
container_start_page | 051101 |
container_title | Physical review letters |
container_volume | 108 |
creator | Charmousis, Christos Copeland, Edmund J Padilla, Antonio Saffin, Paul M |
description | Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions. |
doi_str_mv | 10.1103/physrevlett.108.051101 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_927686636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>927686636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMobk7_wuibT6n3Jm3aPMrQKQwU0eeSJrdu0rUzaQf790Y2fbrwcc658DE2R0gRQd7t1ofgad_SMKQIZQp5xHjGpgiF5gVids6mABK5Bigm7CqELwBAocpLNhEiA9Cop0wvqSNv2iSQ7TvHe-_IJ8Ga1ng-UBd6nwxr6v0hMZ2Lqbbhw9htus9rdtGYNtDN6c7Yx-PD--KJr16Wz4v7FbeZyAYuHSopshJzco6sqVWjZQR1DWUhcotSgayFtsJIcC5HY-tG2hoaI0onUc7Y7XF35_vvkcJQbTfBUtuajvoxVFoUqlRKqphUx6T1fYh2mmrnN1vjDxVC9Wuteo3W3mi_itYiK6ujtVicn16M9Zbcf-1Pk_wBnItrvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927686636</pqid></control><display><type>article</type><title>General second-order scalar-tensor theory and self-tuning</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Charmousis, Christos ; Copeland, Edmund J ; Padilla, Antonio ; Saffin, Paul M</creator><creatorcontrib>Charmousis, Christos ; Copeland, Edmund J ; Padilla, Antonio ; Saffin, Paul M</creatorcontrib><description>Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.108.051101</identifier><identifier>PMID: 22400919</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-01, Vol.108 (5), p.051101-051101, Article 051101</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313</citedby><cites>FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22400919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charmousis, Christos</creatorcontrib><creatorcontrib>Copeland, Edmund J</creatorcontrib><creatorcontrib>Padilla, Antonio</creatorcontrib><creatorcontrib>Saffin, Paul M</creatorcontrib><title>General second-order scalar-tensor theory and self-tuning</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMobk7_wuibT6n3Jm3aPMrQKQwU0eeSJrdu0rUzaQf790Y2fbrwcc658DE2R0gRQd7t1ofgad_SMKQIZQp5xHjGpgiF5gVids6mABK5Bigm7CqELwBAocpLNhEiA9Cop0wvqSNv2iSQ7TvHe-_IJ8Ga1ng-UBd6nwxr6v0hMZ2Lqbbhw9htus9rdtGYNtDN6c7Yx-PD--KJr16Wz4v7FbeZyAYuHSopshJzco6sqVWjZQR1DWUhcotSgayFtsJIcC5HY-tG2hoaI0onUc7Y7XF35_vvkcJQbTfBUtuajvoxVFoUqlRKqphUx6T1fYh2mmrnN1vjDxVC9Wuteo3W3mi_itYiK6ujtVicn16M9Zbcf-1Pk_wBnItrvQ</recordid><startdate>20120130</startdate><enddate>20120130</enddate><creator>Charmousis, Christos</creator><creator>Copeland, Edmund J</creator><creator>Padilla, Antonio</creator><creator>Saffin, Paul M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120130</creationdate><title>General second-order scalar-tensor theory and self-tuning</title><author>Charmousis, Christos ; Copeland, Edmund J ; Padilla, Antonio ; Saffin, Paul M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charmousis, Christos</creatorcontrib><creatorcontrib>Copeland, Edmund J</creatorcontrib><creatorcontrib>Padilla, Antonio</creatorcontrib><creatorcontrib>Saffin, Paul M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charmousis, Christos</au><au>Copeland, Edmund J</au><au>Padilla, Antonio</au><au>Saffin, Paul M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General second-order scalar-tensor theory and self-tuning</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-01-30</date><risdate>2012</risdate><volume>108</volume><issue>5</issue><spage>051101</spage><epage>051101</epage><pages>051101-051101</pages><artnum>051101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lemaître-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.</abstract><cop>United States</cop><pmid>22400919</pmid><doi>10.1103/physrevlett.108.051101</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-01, Vol.108 (5), p.051101-051101, Article 051101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_927686636 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | General second-order scalar-tensor theory and self-tuning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20second-order%20scalar-tensor%20theory%20and%20self-tuning&rft.jtitle=Physical%20review%20letters&rft.au=Charmousis,%20Christos&rft.date=2012-01-30&rft.volume=108&rft.issue=5&rft.spage=051101&rft.epage=051101&rft.pages=051101-051101&rft.artnum=051101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.108.051101&rft_dat=%3Cproquest_cross%3E927686636%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-3d16324815eddecab6f93324bb08725c13603b29c2a30dd51acbf3cb0fa28d313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=927686636&rft_id=info:pmid/22400919&rfr_iscdi=true |