Loading…
Isotope fractionation by thermal diffusion in silicate melts
Isotopes fractionate in thermal gradients, but there is little quantitative understanding of this effect in complex fluids. Here we present results of experiments and molecular dynamics simulations on silicate melts. We show that isotope fractionation arises from classical mechanical effects, and th...
Saved in:
Published in: | Physical review letters 2012-02, Vol.108 (6), p.065901-065901, Article 065901 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isotopes fractionate in thermal gradients, but there is little quantitative understanding of this effect in complex fluids. Here we present results of experiments and molecular dynamics simulations on silicate melts. We show that isotope fractionation arises from classical mechanical effects, and that a scaling relation based on Chapman-Enskog theory predicts the behavior seen in complex fluids without arbitrary fitting parameters. The scaling analysis reveals that network forming elements (Si and O) fractionate significantly less than network modifiers (e.g., Mg, Ca, Fe, Sr, Hf, and U). |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.065901 |