Loading…
Observation of conducting filament growth in nanoscale resistive memories
Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the elec...
Saved in:
Published in: | Nature communications 2012-03, Vol.3 (1), p.732-732, Article 732 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323 |
container_end_page | 732 |
container_issue | 1 |
container_start_page | 732 |
container_title | Nature communications |
container_volume | 3 |
creator | Yang, Yuchao Gao, Peng Gaba, Siddharth Chang, Ting Pan, Xiaoqing Lu, Wei |
description | Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic
ex
-
situ
and
in
-
situ
transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.
Resistive switching devices are promising candidates for non-volatile memories. Using
in-situ
and
ex-situ
transmission electron microscopy, Yang
et al
. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories. |
doi_str_mv | 10.1038/ncomms1737 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928372689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928372689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgii21Gx9AghtBGc1J5palFG9Q6EbXQyaT1JRJUpOZim_vSKsVMZsE8vGfw4_QKZBrIKy8cdJbG6FgxQEaU5JCAgVlh7_eIzSNcUWGwziUaXqMRpSmkJWUjdHToo4qbERnvMNeY-ld08vOuCXWphVWuQ4vg3_vXrFx2AnnoxStwkFFEzuzUdgq64NR8QQdadFGNd3dE_Ryf_c8e0zmi4en2e08kWkGXaLzTDNZFoI1WuqcZE1DqOAMuK5zYIJxlZYZAVE3jIEGQguSc015qQAaRtkEXWxz18G_9Sp2lTVRqrYVTvk-VpyWrKB5yQd5_keufB_csFzFM0KA8AIGdLlFMvgYg9LVOhgrwkcFpPpquNo3POCzXWJfW9X80O8-B3C1BXH4cksV9iP_ifsEppGFqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>950010971</pqid></control><display><type>article</type><title>Observation of conducting filament growth in nanoscale resistive memories</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</creator><creatorcontrib>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</creatorcontrib><description>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic
ex
-
situ
and
in
-
situ
transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.
Resistive switching devices are promising candidates for non-volatile memories. Using
in-situ
and
ex-situ
transmission electron microscopy, Yang
et al
. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1737</identifier><identifier>PMID: 22415823</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/925/927/1007 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-03, Vol.3 (1), p.732-732, Article 732</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</citedby><cites>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/950010971/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/950010971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22415823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuchao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Gaba, Siddharth</creatorcontrib><creatorcontrib>Chang, Ting</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Observation of conducting filament growth in nanoscale resistive memories</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic
ex
-
situ
and
in
-
situ
transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.
Resistive switching devices are promising candidates for non-volatile memories. Using
in-situ
and
ex-situ
transmission electron microscopy, Yang
et al
. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</description><subject>639/301</subject><subject>639/925/927/1007</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpt0MtKAzEUBuAgii21Gx9AghtBGc1J5palFG9Q6EbXQyaT1JRJUpOZim_vSKsVMZsE8vGfw4_QKZBrIKy8cdJbG6FgxQEaU5JCAgVlh7_eIzSNcUWGwziUaXqMRpSmkJWUjdHToo4qbERnvMNeY-ld08vOuCXWphVWuQ4vg3_vXrFx2AnnoxStwkFFEzuzUdgq64NR8QQdadFGNd3dE_Ryf_c8e0zmi4en2e08kWkGXaLzTDNZFoI1WuqcZE1DqOAMuK5zYIJxlZYZAVE3jIEGQguSc015qQAaRtkEXWxz18G_9Sp2lTVRqrYVTvk-VpyWrKB5yQd5_keufB_csFzFM0KA8AIGdLlFMvgYg9LVOhgrwkcFpPpquNo3POCzXWJfW9X80O8-B3C1BXH4cksV9iP_ifsEppGFqA</recordid><startdate>20120313</startdate><enddate>20120313</enddate><creator>Yang, Yuchao</creator><creator>Gao, Peng</creator><creator>Gaba, Siddharth</creator><creator>Chang, Ting</creator><creator>Pan, Xiaoqing</creator><creator>Lu, Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120313</creationdate><title>Observation of conducting filament growth in nanoscale resistive memories</title><author>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301</topic><topic>639/925/927/1007</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuchao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Gaba, Siddharth</creatorcontrib><creatorcontrib>Chang, Ting</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuchao</au><au>Gao, Peng</au><au>Gaba, Siddharth</au><au>Chang, Ting</au><au>Pan, Xiaoqing</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of conducting filament growth in nanoscale resistive memories</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-03-13</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>732</spage><epage>732</epage><pages>732-732</pages><artnum>732</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic
ex
-
situ
and
in
-
situ
transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.
Resistive switching devices are promising candidates for non-volatile memories. Using
in-situ
and
ex-situ
transmission electron microscopy, Yang
et al
. present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22415823</pmid><doi>10.1038/ncomms1737</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2012-03, Vol.3 (1), p.732-732, Article 732 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_928372689 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301 639/925/927/1007 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Observation of conducting filament growth in nanoscale resistive memories |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20conducting%20filament%20growth%20in%20nanoscale%20resistive%20memories&rft.jtitle=Nature%20communications&rft.au=Yang,%20Yuchao&rft.date=2012-03-13&rft.volume=3&rft.issue=1&rft.spage=732&rft.epage=732&rft.pages=732-732&rft.artnum=732&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1737&rft_dat=%3Cproquest_cross%3E928372689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=950010971&rft_id=info:pmid/22415823&rfr_iscdi=true |