Loading…

Observation of conducting filament growth in nanoscale resistive memories

Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the elec...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2012-03, Vol.3 (1), p.732-732, Article 732
Main Authors: Yang, Yuchao, Gao, Peng, Gaba, Siddharth, Chang, Ting, Pan, Xiaoqing, Lu, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323
cites cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323
container_end_page 732
container_issue 1
container_start_page 732
container_title Nature communications
container_volume 3
creator Yang, Yuchao
Gao, Peng
Gaba, Siddharth
Chang, Ting
Pan, Xiaoqing
Lu, Wei
description Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex - situ and in - situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization. Resistive switching devices are promising candidates for non-volatile memories. Using in-situ and ex-situ transmission electron microscopy, Yang et al . present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.
doi_str_mv 10.1038/ncomms1737
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928372689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928372689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgii21Gx9AghtBGc1J5palFG9Q6EbXQyaT1JRJUpOZim_vSKsVMZsE8vGfw4_QKZBrIKy8cdJbG6FgxQEaU5JCAgVlh7_eIzSNcUWGwziUaXqMRpSmkJWUjdHToo4qbERnvMNeY-ld08vOuCXWphVWuQ4vg3_vXrFx2AnnoxStwkFFEzuzUdgq64NR8QQdadFGNd3dE_Ryf_c8e0zmi4en2e08kWkGXaLzTDNZFoI1WuqcZE1DqOAMuK5zYIJxlZYZAVE3jIEGQguSc015qQAaRtkEXWxz18G_9Sp2lTVRqrYVTvk-VpyWrKB5yQd5_keufB_csFzFM0KA8AIGdLlFMvgYg9LVOhgrwkcFpPpquNo3POCzXWJfW9X80O8-B3C1BXH4cksV9iP_ifsEppGFqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>950010971</pqid></control><display><type>article</type><title>Observation of conducting filament growth in nanoscale resistive memories</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</creator><creatorcontrib>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</creatorcontrib><description>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex - situ and in - situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization. Resistive switching devices are promising candidates for non-volatile memories. Using in-situ and ex-situ transmission electron microscopy, Yang et al . present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1737</identifier><identifier>PMID: 22415823</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/925/927/1007 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-03, Vol.3 (1), p.732-732, Article 732</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Mar 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</citedby><cites>FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/950010971/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/950010971?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22415823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yuchao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Gaba, Siddharth</creatorcontrib><creatorcontrib>Chang, Ting</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Observation of conducting filament growth in nanoscale resistive memories</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex - situ and in - situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization. Resistive switching devices are promising candidates for non-volatile memories. Using in-situ and ex-situ transmission electron microscopy, Yang et al . present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</description><subject>639/301</subject><subject>639/925/927/1007</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpt0MtKAzEUBuAgii21Gx9AghtBGc1J5palFG9Q6EbXQyaT1JRJUpOZim_vSKsVMZsE8vGfw4_QKZBrIKy8cdJbG6FgxQEaU5JCAgVlh7_eIzSNcUWGwziUaXqMRpSmkJWUjdHToo4qbERnvMNeY-ld08vOuCXWphVWuQ4vg3_vXrFx2AnnoxStwkFFEzuzUdgq64NR8QQdadFGNd3dE_Ryf_c8e0zmi4en2e08kWkGXaLzTDNZFoI1WuqcZE1DqOAMuK5zYIJxlZYZAVE3jIEGQguSc015qQAaRtkEXWxz18G_9Sp2lTVRqrYVTvk-VpyWrKB5yQd5_keufB_csFzFM0KA8AIGdLlFMvgYg9LVOhgrwkcFpPpquNo3POCzXWJfW9X80O8-B3C1BXH4cksV9iP_ifsEppGFqA</recordid><startdate>20120313</startdate><enddate>20120313</enddate><creator>Yang, Yuchao</creator><creator>Gao, Peng</creator><creator>Gaba, Siddharth</creator><creator>Chang, Ting</creator><creator>Pan, Xiaoqing</creator><creator>Lu, Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120313</creationdate><title>Observation of conducting filament growth in nanoscale resistive memories</title><author>Yang, Yuchao ; Gao, Peng ; Gaba, Siddharth ; Chang, Ting ; Pan, Xiaoqing ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301</topic><topic>639/925/927/1007</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuchao</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Gaba, Siddharth</creatorcontrib><creatorcontrib>Chang, Ting</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuchao</au><au>Gao, Peng</au><au>Gaba, Siddharth</au><au>Chang, Ting</au><au>Pan, Xiaoqing</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of conducting filament growth in nanoscale resistive memories</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-03-13</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>732</spage><epage>732</epage><pages>732-732</pages><artnum>732</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex - situ and in - situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization. Resistive switching devices are promising candidates for non-volatile memories. Using in-situ and ex-situ transmission electron microscopy, Yang et al . present an extensive study of the dynamics of filaments forming across the electrodes of resisting switching devices known as electrochemical metallization memories.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22415823</pmid><doi>10.1038/ncomms1737</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2012-03, Vol.3 (1), p.732-732, Article 732
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_928372689
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301
639/925/927/1007
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Observation of conducting filament growth in nanoscale resistive memories
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20conducting%20filament%20growth%20in%20nanoscale%20resistive%20memories&rft.jtitle=Nature%20communications&rft.au=Yang,%20Yuchao&rft.date=2012-03-13&rft.volume=3&rft.issue=1&rft.spage=732&rft.epage=732&rft.pages=732-732&rft.artnum=732&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1737&rft_dat=%3Cproquest_cross%3E928372689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-f65f3c87a3dfcf605dd02a9319fb613a39e48501abd331f1027069f298e11d323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=950010971&rft_id=info:pmid/22415823&rfr_iscdi=true