Loading…
3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries
Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed...
Saved in:
Published in: | Nano letters 2012-03, Vol.12 (3), p.1198-1202 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3 |
container_end_page | 1202 |
container_issue | 3 |
container_start_page | 1198 |
container_title | Nano letters |
container_volume | 12 |
creator | Gowda, Sanketh R Leela Mohana Reddy, Arava Zhan, Xiaobo Jafry, Huma R Ajayan, Pulickel M |
description | Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2. |
doi_str_mv | 10.1021/nl2034464 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928373402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</originalsourceid><addsrcrecordid>eNp90T1PwzAQBmALgSgUBv4AyoKAIeBvxyMKFJAKLGWOHNcRrpy42IkQ_x5DS7sgJt_w6O78HgAnCF4hiNF15zAklHK6Aw4QIzDnUuLdTV3QETiMcQEhlITBfTDCmCBCBDsAE3KbPavOL33wQ_wpP2wwWTmEYLo-K71zRvc-xKzxIZu92S6bWNdmT1YHX6u-N8GaeAT2GuWiOV6_Y_A6uZuVD_n05f6xvJnmilLS57WiUDMjUcELzgpaS8pELZSak0bQRhqsOReQKq0bw5iAtSZYzBVFWCtJDRmD81XfZfDvg4l91dqojXOqM2n_SuKCCEIhTvLiX4kEx5BKVvBEL1c0_SjGYJpqGWyrwmeFYPUdcLUJONnTdduhbs18I38TTeBsDVTUyjVBddrGrWM8XYXArVM6Vgs_hC7l9sfAL24CjMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762049586</pqid></control><display><type>article</type><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</creator><creatorcontrib>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</creatorcontrib><description>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl2034464</identifier><identifier>PMID: 22313375</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Accumulators ; Aniline Compounds - chemistry ; Collectors ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Design engineering ; Electric Power Supplies ; Electrodes ; Energy Transfer ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Membranes, Artificial ; Microelectrodes ; Miniaturization ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes ; Nanowires ; Particle Size ; Physics ; Porosity ; Quantum wires ; Roughness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin films ; Three dimensional</subject><ispartof>Nano letters, 2012-03, Vol.12 (3), p.1198-1202</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</citedby><cites>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25615330$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gowda, Sanketh R</creatorcontrib><creatorcontrib>Leela Mohana Reddy, Arava</creatorcontrib><creatorcontrib>Zhan, Xiaobo</creatorcontrib><creatorcontrib>Jafry, Huma R</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</description><subject>Accumulators</subject><subject>Aniline Compounds - chemistry</subject><subject>Collectors</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Design engineering</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Energy Transfer</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Microelectrodes</subject><subject>Miniaturization</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Porosity</subject><subject>Quantum wires</subject><subject>Roughness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin films</subject><subject>Three dimensional</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90T1PwzAQBmALgSgUBv4AyoKAIeBvxyMKFJAKLGWOHNcRrpy42IkQ_x5DS7sgJt_w6O78HgAnCF4hiNF15zAklHK6Aw4QIzDnUuLdTV3QETiMcQEhlITBfTDCmCBCBDsAE3KbPavOL33wQ_wpP2wwWTmEYLo-K71zRvc-xKzxIZu92S6bWNdmT1YHX6u-N8GaeAT2GuWiOV6_Y_A6uZuVD_n05f6xvJnmilLS57WiUDMjUcELzgpaS8pELZSak0bQRhqsOReQKq0bw5iAtSZYzBVFWCtJDRmD81XfZfDvg4l91dqojXOqM2n_SuKCCEIhTvLiX4kEx5BKVvBEL1c0_SjGYJpqGWyrwmeFYPUdcLUJONnTdduhbs18I38TTeBsDVTUyjVBddrGrWM8XYXArVM6Vgs_hC7l9sfAL24CjMo</recordid><startdate>20120314</startdate><enddate>20120314</enddate><creator>Gowda, Sanketh R</creator><creator>Leela Mohana Reddy, Arava</creator><creator>Zhan, Xiaobo</creator><creator>Jafry, Huma R</creator><creator>Ajayan, Pulickel M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120314</creationdate><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><author>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accumulators</topic><topic>Aniline Compounds - chemistry</topic><topic>Collectors</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Design engineering</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Energy Transfer</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Microelectrodes</topic><topic>Miniaturization</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Porosity</topic><topic>Quantum wires</topic><topic>Roughness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin films</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowda, Sanketh R</creatorcontrib><creatorcontrib>Leela Mohana Reddy, Arava</creatorcontrib><creatorcontrib>Zhan, Xiaobo</creatorcontrib><creatorcontrib>Jafry, Huma R</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowda, Sanketh R</au><au>Leela Mohana Reddy, Arava</au><au>Zhan, Xiaobo</au><au>Jafry, Huma R</au><au>Ajayan, Pulickel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-03-14</date><risdate>2012</risdate><volume>12</volume><issue>3</issue><spage>1198</spage><epage>1202</epage><pages>1198-1202</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22313375</pmid><doi>10.1021/nl2034464</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-03, Vol.12 (3), p.1198-1202 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_928373402 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Accumulators Aniline Compounds - chemistry Collectors Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Deposition Design engineering Electric Power Supplies Electrodes Energy Transfer Equipment Design Equipment Failure Analysis Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Membranes, Artificial Microelectrodes Miniaturization Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nanotubes Nanowires Particle Size Physics Porosity Quantum wires Roughness Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin films Three dimensional |
title | 3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Nanoporous%20Nanowire%20Current%20Collectors%20for%20Thin%20Film%20Microbatteries&rft.jtitle=Nano%20letters&rft.au=Gowda,%20Sanketh%20R&rft.date=2012-03-14&rft.volume=12&rft.issue=3&rft.spage=1198&rft.epage=1202&rft.pages=1198-1202&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl2034464&rft_dat=%3Cproquest_cross%3E1762049586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762049586&rft_id=info:pmid/22313375&rfr_iscdi=true |