Loading…

3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries

Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2012-03, Vol.12 (3), p.1198-1202
Main Authors: Gowda, Sanketh R, Leela Mohana Reddy, Arava, Zhan, Xiaobo, Jafry, Huma R, Ajayan, Pulickel M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3
cites cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3
container_end_page 1202
container_issue 3
container_start_page 1198
container_title Nano letters
container_volume 12
creator Gowda, Sanketh R
Leela Mohana Reddy, Arava
Zhan, Xiaobo
Jafry, Huma R
Ajayan, Pulickel M
description Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.
doi_str_mv 10.1021/nl2034464
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_928373402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</originalsourceid><addsrcrecordid>eNp90T1PwzAQBmALgSgUBv4AyoKAIeBvxyMKFJAKLGWOHNcRrpy42IkQ_x5DS7sgJt_w6O78HgAnCF4hiNF15zAklHK6Aw4QIzDnUuLdTV3QETiMcQEhlITBfTDCmCBCBDsAE3KbPavOL33wQ_wpP2wwWTmEYLo-K71zRvc-xKzxIZu92S6bWNdmT1YHX6u-N8GaeAT2GuWiOV6_Y_A6uZuVD_n05f6xvJnmilLS57WiUDMjUcELzgpaS8pELZSak0bQRhqsOReQKq0bw5iAtSZYzBVFWCtJDRmD81XfZfDvg4l91dqojXOqM2n_SuKCCEIhTvLiX4kEx5BKVvBEL1c0_SjGYJpqGWyrwmeFYPUdcLUJONnTdduhbs18I38TTeBsDVTUyjVBddrGrWM8XYXArVM6Vgs_hC7l9sfAL24CjMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762049586</pqid></control><display><type>article</type><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</creator><creatorcontrib>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</creatorcontrib><description>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl2034464</identifier><identifier>PMID: 22313375</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Accumulators ; Aniline Compounds - chemistry ; Collectors ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Design engineering ; Electric Power Supplies ; Electrodes ; Energy Transfer ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Membranes, Artificial ; Microelectrodes ; Miniaturization ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotubes ; Nanowires ; Particle Size ; Physics ; Porosity ; Quantum wires ; Roughness ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin films ; Three dimensional</subject><ispartof>Nano letters, 2012-03, Vol.12 (3), p.1198-1202</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</citedby><cites>FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25615330$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22313375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gowda, Sanketh R</creatorcontrib><creatorcontrib>Leela Mohana Reddy, Arava</creatorcontrib><creatorcontrib>Zhan, Xiaobo</creatorcontrib><creatorcontrib>Jafry, Huma R</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</description><subject>Accumulators</subject><subject>Aniline Compounds - chemistry</subject><subject>Collectors</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Design engineering</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Energy Transfer</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Membranes, Artificial</subject><subject>Microelectrodes</subject><subject>Miniaturization</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotubes</subject><subject>Nanowires</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Porosity</subject><subject>Quantum wires</subject><subject>Roughness</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin films</subject><subject>Three dimensional</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90T1PwzAQBmALgSgUBv4AyoKAIeBvxyMKFJAKLGWOHNcRrpy42IkQ_x5DS7sgJt_w6O78HgAnCF4hiNF15zAklHK6Aw4QIzDnUuLdTV3QETiMcQEhlITBfTDCmCBCBDsAE3KbPavOL33wQ_wpP2wwWTmEYLo-K71zRvc-xKzxIZu92S6bWNdmT1YHX6u-N8GaeAT2GuWiOV6_Y_A6uZuVD_n05f6xvJnmilLS57WiUDMjUcELzgpaS8pELZSak0bQRhqsOReQKq0bw5iAtSZYzBVFWCtJDRmD81XfZfDvg4l91dqojXOqM2n_SuKCCEIhTvLiX4kEx5BKVvBEL1c0_SjGYJpqGWyrwmeFYPUdcLUJONnTdduhbs18I38TTeBsDVTUyjVBddrGrWM8XYXArVM6Vgs_hC7l9sfAL24CjMo</recordid><startdate>20120314</startdate><enddate>20120314</enddate><creator>Gowda, Sanketh R</creator><creator>Leela Mohana Reddy, Arava</creator><creator>Zhan, Xiaobo</creator><creator>Jafry, Huma R</creator><creator>Ajayan, Pulickel M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120314</creationdate><title>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</title><author>Gowda, Sanketh R ; Leela Mohana Reddy, Arava ; Zhan, Xiaobo ; Jafry, Huma R ; Ajayan, Pulickel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accumulators</topic><topic>Aniline Compounds - chemistry</topic><topic>Collectors</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Design engineering</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Energy Transfer</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Membranes, Artificial</topic><topic>Microelectrodes</topic><topic>Miniaturization</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotubes</topic><topic>Nanowires</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Porosity</topic><topic>Quantum wires</topic><topic>Roughness</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin films</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gowda, Sanketh R</creatorcontrib><creatorcontrib>Leela Mohana Reddy, Arava</creatorcontrib><creatorcontrib>Zhan, Xiaobo</creatorcontrib><creatorcontrib>Jafry, Huma R</creatorcontrib><creatorcontrib>Ajayan, Pulickel M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gowda, Sanketh R</au><au>Leela Mohana Reddy, Arava</au><au>Zhan, Xiaobo</au><au>Jafry, Huma R</au><au>Ajayan, Pulickel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-03-14</date><risdate>2012</risdate><volume>12</volume><issue>3</issue><spage>1198</spage><epage>1202</epage><pages>1198-1202</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Conventional thin film batteries are fabricated based on planar current collector designs where the high contact resistance between the current collector and electrodes impedes overall battery performance. Hence, current collectors based on 3D architectures and nanoscale roughness has been proposed to dramatically increase the electrode-current collector surface contact areas and hence significantly reduce interfacial resistance. The nanorod-based current collector configuration is one of several 3D designs which has shown high potential for the development of high energy and high power microbatteries in this regard. Herein we fabricate a nanoporous nanorod based current collector, which provides increased surface area for electrode deposition arising from the porosity of each nanorods, yet keeping an ordered spacing between nanorods for the deposition of subsequent electrolyte and electrode layers. The new nanostructured 3D current collector is demonstrated with a polyaniline (PANI)-based electrode system and is shown to deliver improved rate capability characteristics compared to planar configurations. We have been able to achieve stable capacities of ∼32 μAh/cm2 up to 75 cycles of charge/discharge even at a current rate of ∼0.04 mA/cm2 and have observed good rate capability even at high current rates of ∼0.8 mA/cm2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22313375</pmid><doi>10.1021/nl2034464</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-03, Vol.12 (3), p.1198-1202
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_928373402
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Accumulators
Aniline Compounds - chemistry
Collectors
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Deposition
Design engineering
Electric Power Supplies
Electrodes
Energy Transfer
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Membranes, Artificial
Microelectrodes
Miniaturization
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotubes
Nanowires
Particle Size
Physics
Porosity
Quantum wires
Roughness
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin films
Three dimensional
title 3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Nanoporous%20Nanowire%20Current%20Collectors%20for%20Thin%20Film%20Microbatteries&rft.jtitle=Nano%20letters&rft.au=Gowda,%20Sanketh%20R&rft.date=2012-03-14&rft.volume=12&rft.issue=3&rft.spage=1198&rft.epage=1202&rft.pages=1198-1202&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl2034464&rft_dat=%3Cproquest_cross%3E1762049586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a443t-ba40c5e918686584b9457b7aad3f74f9e2c66704accfe5570bc327da412ca94e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1762049586&rft_id=info:pmid/22313375&rfr_iscdi=true