Loading…

Metal sulphides from wastewater: Assessing the impact of supersaturation control strategies

Metal sulphide precipitation forms an important component of acid mine drainage remediation systems based on bacterial sulphate reduction. However, the precipitation reaction is inherently driven by very high levels of supersaturation with the generation of small particles with poor solid–liquid sep...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) 2012-05, Vol.46 (7), p.2088-2100
Main Authors: Mokone, T.P., van Hille, R.P., Lewis, A.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal sulphide precipitation forms an important component of acid mine drainage remediation systems based on bacterial sulphate reduction. However, the precipitation reaction is inherently driven by very high levels of supersaturation with the generation of small particles with poor solid–liquid separation characteristics. In this study, the effect of strategies used to manage supersaturation was investigated during copper and zinc sulphide precipitation reactions. Initial batch studies showed the origin of sulphide (biological or chemical) had no significant effect on the efficiency of zinc sulphide precipitation. For copper, low metal removal efficiency was obtained at metal to sulphide molar ratios below 1.6 in the synthetic sulphide system. This was improved in the biogenic sulphide system, due to the presence of residual volatile fatty acids, but the presence or absence of particulate organic matter had no effect on recovery. Subsequent studies, conducted using synthetic sulphide solutions in a seeded fluidised bed reactor with multiple reagent feed points (2FP and 6FP) and different recirculation flow rates (300 and 120 mL min−1) showed efficient zinc sulphide precipitation, but limited (
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2012.01.027