Loading…
GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators
We theoretically investigate an optomechanical structure consisting of two parallel GaAs membranes with an air-slot type photonic crystal nanocavity. The optical cavity has a quality factor of 4.8 × 10 at 1.52 μm and an extremely small modal volume of 0.015 of a cubic wavelength for the fundamental...
Saved in:
Published in: | Optics express 2012-02, Vol.20 (5), p.5204-5212 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically investigate an optomechanical structure consisting of two parallel GaAs membranes with an air-slot type photonic crystal nanocavity. The optical cavity has a quality factor of 4.8 × 10
at 1.52 μm and an extremely small modal volume of 0.015 of a cubic wavelength for the fundamental mode in a vacuum. The localized electric field near the air/dielectric-object boundary provides a large optomechanical coupling factor of ~990 GHz/nm. The fundamental mechanical mode resonance is 95 MHz and a quality factor is 83,800 at room temperature, nearly seven times higher than that for a similar Si-based structure. This high mechanical quality factor of a GaAs-based structure stems from low thermoelastic loss and leads to more effective optical control of nanomechanical oscillators. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.20.005204 |