Loading…
Enhanced light output of InGaN/GaN blue light emitting diodes with Ag nano-particles embedded in nano-needle layer
2.7 times increase in room temperature photoluminescence (PL) intensity and 3.2 times increase in electroluminescence (EL) intensity were observed in blue multi-quantum-well (MQW) GaN/InGaN light emitting diodes (LEDs) as a result of introduction of nano-needle structure embedded with Ag nanoparticl...
Saved in:
Published in: | Optics express 2012-03, Vol.20 (6), p.6036-6041 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2.7 times increase in room temperature photoluminescence (PL) intensity and 3.2 times increase in electroluminescence (EL) intensity were observed in blue multi-quantum-well (MQW) GaN/InGaN light emitting diodes (LEDs) as a result of introduction of nano-needle structure embedded with Ag nanoparticles (NPs) into n-GaN film underlying the active MQW region and thick p-GaN contact layer of LEDs. The nano-needle structure was produced by photoelectrochemical etching. Simultaneously a measurable decrease in room temperature decay time from 2.2 ns in control samples to 1.6 ns in PL was observed. The results are explained by strong coupling of recombination in GaN/InGaN MQWs with Ag NPs related localized surface plasmons. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.006036 |