Loading…
Biphasic Stress Response in the Soleus during Reloading after Hind Limb Unloading
Extreme disuse and spaceflight elicit rapid skeletal muscle atrophy, accompanied by elevated proinflammatory signaling and impaired stress response proteins (e.g., heat shock proteins (HSP), insulin-like growth factor 1 (IGF-1)). Recovery of muscle mass is delayed during the early stage of reloading...
Saved in:
Published in: | Medicine and science in sports and exercise 2012-04, Vol.44 (4), p.600-609 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extreme disuse and spaceflight elicit rapid skeletal muscle atrophy, accompanied by elevated proinflammatory signaling and impaired stress response proteins (e.g., heat shock proteins (HSP), insulin-like growth factor 1 (IGF-1)). Recovery of muscle mass is delayed during the early stage of reloading after prolonged unloading, with a concomitant impairment of HSP70 and IGF-1. We postulated that proinflammatory signaling and stress response alterations would characterize early and late phases of signaling during reloading.
Twenty-four adult SD rats were divided into the following groups: controls, 28 d of hind limb unloading (HU), HU + early (7 d) reloading (HU-R7), and HU + late (28 d) reloading (HU-R28).
Soleus mass decreased (-55%) with HU and remained depressed (-41%) at HU-R7. Nuclear factor κB activation and oxidative stress were elevated with HU and remained high during reloading. HU elevated inducible nitric oxide synthase and returned to baseline during reloading, whereas 3-nitrotyrosine did not increase with HU and peaked at HU-R7. HU depressed levels of HSP25 phosphorylation at Ser82 and IGF-1. Although p-HSP25 and Akt phosphorylation (Ser473) recovered during early reloading, HSP70, heat shock factor 1, and IGF-1 remained depressed. HSP70, heat shock factor 1, and IGF-1 recovered, whereas p-Akt and 3-nitrotyrosine decreased to control levels at HU-R28.
Reloading elicited an early phase characterized by elevated nuclear factor κB activation, 3-nitrotyrosine, p-HSP25, and p-Akt levels and a delayed phase with recovery of HSP70, IGF-1, and muscle mass. We conclude that the reloading phenotype in skeletal muscle is expressed in two distinct phases related to (a) pro-inflammatory signaling and (b) muscle mass recovery. |
---|---|
ISSN: | 0195-9131 1530-0315 |
DOI: | 10.1249/mss.0b013e31823ab37a |