Loading…
Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface
This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discret...
Saved in:
Published in: | Clinical EEG and Neuroscience 2012-01, Vol.43 (1), p.32-38 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discrete wavelet transform (DWT) data with the AM method. The FCM is then applied to recognize extracted features. Compared with band power features, k-means clustering, and linear discriminant analysis (LDA) classifier, the results indicate that the proposed method is satisfactory in applications of brain–computer interface (BCI). |
---|---|
ISSN: | 1550-0594 2169-5202 |
DOI: | 10.1177/1550059411429528 |