Loading…

Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface

This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discret...

Full description

Saved in:
Bibliographic Details
Published in:Clinical EEG and Neuroscience 2012-01, Vol.43 (1), p.32-38
Main Authors: Hsu, Wei-Yen, Li, Yu-Chuan, Hsu, Chien-Yeh, Liu, Chien-Tsai, Chiu, Hung-Wen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3
cites cdi_FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3
container_end_page 38
container_issue 1
container_start_page 32
container_title Clinical EEG and Neuroscience
container_volume 43
creator Hsu, Wei-Yen
Li, Yu-Chuan
Hsu, Chien-Yeh
Liu, Chien-Tsai
Chiu, Hung-Wen
description This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discrete wavelet transform (DWT) data with the AM method. The FCM is then applied to recognize extracted features. Compared with band power features, k-means clustering, and linear discriminant analysis (LDA) classifier, the results indicate that the proposed method is satisfactory in applications of brain–computer interface (BCI).
doi_str_mv 10.1177/1550059411429528
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_929123715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1550059411429528</sage_id><sourcerecordid>1496895566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3</originalsourceid><addsrcrecordid>eNp9kTFv2zAQhYmgQe063TMVBDqkixKSIilxdIy6CRAjSzMLJ-kUyJBElRQHe-p_6D_MLykNp0UQIFnuhvfdOzw8Qs45u-Q8y664UowpIzmXwiiRn5C54NokSjDxgcwPcnLQZ-ST91vGUi1S-ZHMhJAiVdLMyeNyHLu2gqm1A7UN3YRuan0FHdJlH5Up1Eg3tg7dEVkjTMGhpzDUdB32-x1dJRuEwdPJ0msH7fD0-8_K9mOY0NHbIc4GKjwjpw10Hj8_7wV5WH__ubpJ7u5_3K6Wd0mVmmxKhNSskqbkUIPOVVVyRN7kCCVXKWhEUwJIzOocRd5IiOFAg2yq3AjOJKYLcnH0HZ39FdBPRR_jYNfBgDb4wgjDRZpFtwX59i7JpdG5UUrriH59hW5tcEPMEalMSyMkSyPFjlTlrPcOm2J0bQ9uV3BWHOoqXtcVT748G4eyx_r_wb9-IpAcAQ-P-OLrW4Z_Adv8nVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1476492403</pqid></control><display><type>article</type><title>Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface</title><source>SAGE</source><creator>Hsu, Wei-Yen ; Li, Yu-Chuan ; Hsu, Chien-Yeh ; Liu, Chien-Tsai ; Chiu, Hung-Wen</creator><creatorcontrib>Hsu, Wei-Yen ; Li, Yu-Chuan ; Hsu, Chien-Yeh ; Liu, Chien-Tsai ; Chiu, Hung-Wen</creatorcontrib><description>This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discrete wavelet transform (DWT) data with the AM method. The FCM is then applied to recognize extracted features. Compared with band power features, k-means clustering, and linear discriminant analysis (LDA) classifier, the results indicate that the proposed method is satisfactory in applications of brain–computer interface (BCI).</description><identifier>ISSN: 1550-0594</identifier><identifier>EISSN: 2169-5202</identifier><identifier>DOI: 10.1177/1550059411429528</identifier><identifier>PMID: 22423549</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Accuracy ; Algorithms ; Brain ; Brain - physiology ; Brain research ; Data processing ; Discriminant analysis ; Electrodes ; Electroencephalography - methods ; Evoked Potentials, Motor - physiology ; Female ; Fuzzy Logic ; Humans ; Male ; Methods ; Noise ; Older people ; Pattern Recognition, Automated - methods ; Sensitivity and Specificity ; User-Computer Interface</subject><ispartof>Clinical EEG and Neuroscience, 2012-01, Vol.43 (1), p.32-38</ispartof><rights>EEG and Clinical Neuroscience Society 2012</rights><rights>Copyright SAGE PUBLICATIONS, INC. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3</citedby><cites>FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27913,27915,27916,79125</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22423549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hsu, Wei-Yen</creatorcontrib><creatorcontrib>Li, Yu-Chuan</creatorcontrib><creatorcontrib>Hsu, Chien-Yeh</creatorcontrib><creatorcontrib>Liu, Chien-Tsai</creatorcontrib><creatorcontrib>Chiu, Hung-Wen</creatorcontrib><title>Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface</title><title>Clinical EEG and Neuroscience</title><addtitle>Clin EEG Neurosci</addtitle><description>This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discrete wavelet transform (DWT) data with the AM method. The FCM is then applied to recognize extracted features. Compared with band power features, k-means clustering, and linear discriminant analysis (LDA) classifier, the results indicate that the proposed method is satisfactory in applications of brain–computer interface (BCI).</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain research</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Electrodes</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials, Motor - physiology</subject><subject>Female</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Male</subject><subject>Methods</subject><subject>Noise</subject><subject>Older people</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Sensitivity and Specificity</subject><subject>User-Computer Interface</subject><issn>1550-0594</issn><issn>2169-5202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kTFv2zAQhYmgQe063TMVBDqkixKSIilxdIy6CRAjSzMLJ-kUyJBElRQHe-p_6D_MLykNp0UQIFnuhvfdOzw8Qs45u-Q8y664UowpIzmXwiiRn5C54NokSjDxgcwPcnLQZ-ST91vGUi1S-ZHMhJAiVdLMyeNyHLu2gqm1A7UN3YRuan0FHdJlH5Up1Eg3tg7dEVkjTMGhpzDUdB32-x1dJRuEwdPJ0msH7fD0-8_K9mOY0NHbIc4GKjwjpw10Hj8_7wV5WH__ubpJ7u5_3K6Wd0mVmmxKhNSskqbkUIPOVVVyRN7kCCVXKWhEUwJIzOocRd5IiOFAg2yq3AjOJKYLcnH0HZ39FdBPRR_jYNfBgDb4wgjDRZpFtwX59i7JpdG5UUrriH59hW5tcEPMEalMSyMkSyPFjlTlrPcOm2J0bQ9uV3BWHOoqXtcVT748G4eyx_r_wb9-IpAcAQ-P-OLrW4Z_Adv8nVY</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Hsu, Wei-Yen</creator><creator>Li, Yu-Chuan</creator><creator>Hsu, Chien-Yeh</creator><creator>Liu, Chien-Tsai</creator><creator>Chiu, Hung-Wen</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface</title><author>Hsu, Wei-Yen ; Li, Yu-Chuan ; Hsu, Chien-Yeh ; Liu, Chien-Tsai ; Chiu, Hung-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain research</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Electrodes</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials, Motor - physiology</topic><topic>Female</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Male</topic><topic>Methods</topic><topic>Noise</topic><topic>Older people</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Sensitivity and Specificity</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Wei-Yen</creatorcontrib><creatorcontrib>Li, Yu-Chuan</creatorcontrib><creatorcontrib>Hsu, Chien-Yeh</creatorcontrib><creatorcontrib>Liu, Chien-Tsai</creatorcontrib><creatorcontrib>Chiu, Hung-Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing &amp; Allied Health Source (ProQuest)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical EEG and Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Wei-Yen</au><au>Li, Yu-Chuan</au><au>Hsu, Chien-Yeh</au><au>Liu, Chien-Tsai</au><au>Chiu, Hung-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface</atitle><jtitle>Clinical EEG and Neuroscience</jtitle><addtitle>Clin EEG Neurosci</addtitle><date>2012-01</date><risdate>2012</risdate><volume>43</volume><issue>1</issue><spage>32</spage><epage>38</epage><pages>32-38</pages><issn>1550-0594</issn><eissn>2169-5202</eissn><abstract>This study proposed a recognized system for electroencephalogram (EEG) data classification. In addition to the wavelet-based amplitude modulation (AM) features, the fuzzy c-means (FCM) clustering is used for the discriminant of left finger lifting and resting. The features are extracted from discrete wavelet transform (DWT) data with the AM method. The FCM is then applied to recognize extracted features. Compared with band power features, k-means clustering, and linear discriminant analysis (LDA) classifier, the results indicate that the proposed method is satisfactory in applications of brain–computer interface (BCI).</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>22423549</pmid><doi>10.1177/1550059411429528</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1550-0594
ispartof Clinical EEG and Neuroscience, 2012-01, Vol.43 (1), p.32-38
issn 1550-0594
2169-5202
language eng
recordid cdi_proquest_miscellaneous_929123715
source SAGE
subjects Accuracy
Algorithms
Brain
Brain - physiology
Brain research
Data processing
Discriminant analysis
Electrodes
Electroencephalography - methods
Evoked Potentials, Motor - physiology
Female
Fuzzy Logic
Humans
Male
Methods
Noise
Older people
Pattern Recognition, Automated - methods
Sensitivity and Specificity
User-Computer Interface
title Application of Multiscale Amplitude Modulation Features and Fuzzy C-Means to Brain–Computer Interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Multiscale%20Amplitude%20Modulation%20Features%20and%20Fuzzy%20C-Means%20to%20Brain%E2%80%93Computer%20Interface&rft.jtitle=Clinical%20EEG%20and%20Neuroscience&rft.au=Hsu,%20Wei-Yen&rft.date=2012-01&rft.volume=43&rft.issue=1&rft.spage=32&rft.epage=38&rft.pages=32-38&rft.issn=1550-0594&rft.eissn=2169-5202&rft_id=info:doi/10.1177/1550059411429528&rft_dat=%3Cproquest_cross%3E1496895566%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-2460c49b1ada685cb1ee1f8eab153a6ee9baa4e7d8e28f4a059a6a4fc892104e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1476492403&rft_id=info:pmid/22423549&rft_sage_id=10.1177_1550059411429528&rfr_iscdi=true