Loading…
Neuroprotective effects of INM-176 against lipopolysaccharide-induced neuronal injury
Neuroinflammation plays a critical role in the etiology of chronic neurodegenerative diseases such as Alzheimer's disease. INM-176 is a standardized ethanolic extract of Angelica gigas, which has been traditionally used as a tonic to treat anemia. In the present study, we investigated whether I...
Saved in:
Published in: | Pharmacology, biochemistry and behavior biochemistry and behavior, 2012-05, Vol.101 (3), p.427-433 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neuroinflammation plays a critical role in the etiology of chronic neurodegenerative diseases such as Alzheimer's disease. INM-176 is a standardized ethanolic extract of Angelica gigas, which has been traditionally used as a tonic to treat anemia. In the present study, we investigated whether INM-176 exhibits neuroprotective activities against lipopolysaccharide (LPS)-induced neuronal damage in vitro and in vivo. In primary microglial cells, INM-176 significantly inhibited LPS-induced nitric oxide release and expression of tumor necrosis factor-α and interleukin-1β. The expression levels of inducible nitric oxide synthase and cylcooxygenase-2 in BV2 microglial cells were markedly upregulated by LPS, but this increased expression was counteracted by INM-176. LPS-mediated neuronal damage in an organotypic hippocampal slice culture was also attenuated by the administration of INM-176. In addition, LPS (1μg/2μl, i.c.v.)-induced cognitive dysfunction in mice, as determined by passive avoidance and Y-maze tasks, was significantly attenuated by the administration of INM-176. Furthermore, the activation of microglia or astrocytes by LPS in the hippocampal regions of mice was suppressed by INM-176. These results suggest that the neuroprotective and cognition ameliorating effects of INM-176 against LPS-induced damage are mediated, in part, by its anti-inflammatory activities.
► INM-176 suppresses LPS-induced release of proinflammatory and cytotoxic factors. ► INM-176 blocked LPS-induced neuronal damage in the hippocampal slice culture. ► INM-176 ameliorates LPS-induced cognitive impairment via blockade of gliosis. |
---|---|
ISSN: | 0091-3057 1873-5177 |
DOI: | 10.1016/j.pbb.2012.02.003 |