Loading…

Putative CENP-B paralogues are not present at mammalian centromeres

Although centromere protein B (CENP-B) is a highly conserved mammalian centromere protein, its function remains unknown. The presence of the protein is required to form artificial satellite DNA-based centromeres de novo, yet cenpb knockout mice are viable for multiple generations with no mitotic or...

Full description

Saved in:
Bibliographic Details
Published in:Chromosoma 2012-04, Vol.121 (2), p.169-179
Main Authors: Marshall, Owen J, Choo, K. H. Andy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although centromere protein B (CENP-B) is a highly conserved mammalian centromere protein, its function remains unknown. The presence of the protein is required to form artificial satellite DNA-based centromeres de novo, yet cenpb knockout mice are viable for multiple generations with no mitotic or meiotic defects, and the protein is not present at fully functional neocentromeres. Previous studies have suggested that the presence of functionally redundant paralogues of CENP-B may explain the lack of a phenotype in knockout mice, and the related Tigger-derived (TIGD) family of proteins has been implicated as the most likely candidate for such paralogues. Here, we describe an investigation of the centromere-binding properties of the three TIGD proteins most highly related to CENP-B through phylogenetic analysis through EGFP fusion studies and immunocytochemistry. Although two of the three proteins bound to human centromeres with low affinity when overexpressed as fusion proteins, the strongest candidate, TIGD3, demonstrated no native centromeric binding when using raised antibodies, either in human cells or in cenpb −/− mouse ES cells. We conclude that the existence of functional CENP-B paralogues is highly unlikely and that CENP-B acts alone at the centromere. Based on these data, we suggest a new, meiotic drive model of CENP-B action during centromere repositioning in evolution.
ISSN:0009-5915
1432-0886
DOI:10.1007/s00412-011-0348-3