Loading…
Deep-sea and pelagic rod visual pigments identified in the mysticete whales
Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 n...
Saved in:
Published in: | Visual neuroscience 2012-03, Vol.29 (2), p.95-103 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3 |
container_end_page | 103 |
container_issue | 2 |
container_start_page | 95 |
container_title | Visual neuroscience |
container_volume | 29 |
creator | BISCHOFF, NICOLE NICKLE, BENJAMIN CRONIN, THOMAS W. VELASQUEZ, STEPHANI FASICK, JEFFRY I. |
description | Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479–484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here. |
doi_str_mv | 10.1017/S0952523812000107 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_940837787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0952523812000107</cupid><sourcerecordid>1008835888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi0EKtttfwAXZHGhl9BxbMfOEQFtEUgc2p4jf0x2jfJFnLTi3-PVbosEgsvMYZ55RqOXkCMGZwyY-voTSpnLnGuWAwADtUcWTBRlphUT-2SxGWeb-SH5GON9QjiT_AM5zHPBhMjFgtxcIg5ZRENN5-mAjVkFR8fe0z8hzqahQ1i12E2RBp9aqAN6Gjo6rZG2j3EKDiekf9emwfiJHNSmifh515fk97erXxc_stu779cX57eZEwqmzGpmWK1KqC1wDhIFFlY7b5324MrS1VyU3ikO4L2UMq-LQhTGckSwwlm-JKdb7zD2DzPGqWpDdNg0psN-jlUpQHOltErkl3dJBqA1lzqVJTl5gd7389ilP5JPMCkKlieIbSE39jGOWFfDGFozPiZTtYmkehVJ2jneiWfbov-_8S-DBPCd1LR2DH6Fz6ff1j4BkMyUXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>944154612</pqid></control><display><type>article</type><title>Deep-sea and pelagic rod visual pigments identified in the mysticete whales</title><source>Cambridge Journals Online</source><creator>BISCHOFF, NICOLE ; NICKLE, BENJAMIN ; CRONIN, THOMAS W. ; VELASQUEZ, STEPHANI ; FASICK, JEFFRY I.</creator><creatorcontrib>BISCHOFF, NICOLE ; NICKLE, BENJAMIN ; CRONIN, THOMAS W. ; VELASQUEZ, STEPHANI ; FASICK, JEFFRY I.</creatorcontrib><description>Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479–484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here.</description><identifier>ISSN: 0952-5238</identifier><identifier>EISSN: 1469-8714</identifier><identifier>DOI: 10.1017/S0952523812000107</identifier><identifier>PMID: 22414424</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Amino Acid Sequence ; Animals ; Eschrichtius robustus ; Marine ; Megaptera novaeangliae ; Mysticetes ; Odontoceti ; Phylogeny ; Retinal Pigments - chemistry ; Retinal Pigments - genetics ; Retinal Rod Photoreceptor Cells - chemistry ; Rod Opsins - chemistry ; Rod Opsins - genetics ; Species Specificity ; Whales - classification ; Whales - genetics</subject><ispartof>Visual neuroscience, 2012-03, Vol.29 (2), p.95-103</ispartof><rights>Copyright © Cambridge University Press 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3</citedby><cites>FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0952523812000107/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22414424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BISCHOFF, NICOLE</creatorcontrib><creatorcontrib>NICKLE, BENJAMIN</creatorcontrib><creatorcontrib>CRONIN, THOMAS W.</creatorcontrib><creatorcontrib>VELASQUEZ, STEPHANI</creatorcontrib><creatorcontrib>FASICK, JEFFRY I.</creatorcontrib><title>Deep-sea and pelagic rod visual pigments identified in the mysticete whales</title><title>Visual neuroscience</title><addtitle>Vis Neurosci</addtitle><description>Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479–484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Eschrichtius robustus</subject><subject>Marine</subject><subject>Megaptera novaeangliae</subject><subject>Mysticetes</subject><subject>Odontoceti</subject><subject>Phylogeny</subject><subject>Retinal Pigments - chemistry</subject><subject>Retinal Pigments - genetics</subject><subject>Retinal Rod Photoreceptor Cells - chemistry</subject><subject>Rod Opsins - chemistry</subject><subject>Rod Opsins - genetics</subject><subject>Species Specificity</subject><subject>Whales - classification</subject><subject>Whales - genetics</subject><issn>0952-5238</issn><issn>1469-8714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1P3DAQhi0EKtttfwAXZHGhl9BxbMfOEQFtEUgc2p4jf0x2jfJFnLTi3-PVbosEgsvMYZ55RqOXkCMGZwyY-voTSpnLnGuWAwADtUcWTBRlphUT-2SxGWeb-SH5GON9QjiT_AM5zHPBhMjFgtxcIg5ZRENN5-mAjVkFR8fe0z8hzqahQ1i12E2RBp9aqAN6Gjo6rZG2j3EKDiekf9emwfiJHNSmifh515fk97erXxc_stu779cX57eZEwqmzGpmWK1KqC1wDhIFFlY7b5324MrS1VyU3ikO4L2UMq-LQhTGckSwwlm-JKdb7zD2DzPGqWpDdNg0psN-jlUpQHOltErkl3dJBqA1lzqVJTl5gd7389ilP5JPMCkKlieIbSE39jGOWFfDGFozPiZTtYmkehVJ2jneiWfbov-_8S-DBPCd1LR2DH6Fz6ff1j4BkMyUXA</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>BISCHOFF, NICOLE</creator><creator>NICKLE, BENJAMIN</creator><creator>CRONIN, THOMAS W.</creator><creator>VELASQUEZ, STEPHANI</creator><creator>FASICK, JEFFRY I.</creator><general>Cambridge University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Deep-sea and pelagic rod visual pigments identified in the mysticete whales</title><author>BISCHOFF, NICOLE ; NICKLE, BENJAMIN ; CRONIN, THOMAS W. ; VELASQUEZ, STEPHANI ; FASICK, JEFFRY I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Eschrichtius robustus</topic><topic>Marine</topic><topic>Megaptera novaeangliae</topic><topic>Mysticetes</topic><topic>Odontoceti</topic><topic>Phylogeny</topic><topic>Retinal Pigments - chemistry</topic><topic>Retinal Pigments - genetics</topic><topic>Retinal Rod Photoreceptor Cells - chemistry</topic><topic>Rod Opsins - chemistry</topic><topic>Rod Opsins - genetics</topic><topic>Species Specificity</topic><topic>Whales - classification</topic><topic>Whales - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BISCHOFF, NICOLE</creatorcontrib><creatorcontrib>NICKLE, BENJAMIN</creatorcontrib><creatorcontrib>CRONIN, THOMAS W.</creatorcontrib><creatorcontrib>VELASQUEZ, STEPHANI</creatorcontrib><creatorcontrib>FASICK, JEFFRY I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Visual neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BISCHOFF, NICOLE</au><au>NICKLE, BENJAMIN</au><au>CRONIN, THOMAS W.</au><au>VELASQUEZ, STEPHANI</au><au>FASICK, JEFFRY I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-sea and pelagic rod visual pigments identified in the mysticete whales</atitle><jtitle>Visual neuroscience</jtitle><addtitle>Vis Neurosci</addtitle><date>2012-03</date><risdate>2012</risdate><volume>29</volume><issue>2</issue><spage>95</spage><epage>103</epage><pages>95-103</pages><issn>0952-5238</issn><eissn>1469-8714</eissn><abstract>Our current understanding of the spectral sensitivities of the mysticete whale rod-based visual pigments is based on two species, the gray whale (Eschrichtius robustus) and the humpback whale (Megaptera novaeangliae) possessing absorbance maxima determined from difference spectra to be 492 and 497 nm, respectively. These absorbance maxima values are blueshifted relative to those from typical terrestrial mammals (≈500 nm) but are redshifted when compared to those identified in the odontocetes (479–484 nm). Although these mysticete species represent two of the four mysticete families, they do not fully represent the mysticete whales in terms of foraging strategy and underwater photic environments where foraging occurs. In order to better understand the spectral sensitivities of the mysticete whale rod visual pigments, we have examined the rod opsin genes from 11 mysticete species and their associated amino acid substitutions. Based on the amino acids occurring at positions 83, 292, and 299 along with the directly determined dark spectra from expressed odontocete and mysticete rod visual pigments, we have determined that the majority of mysticete whales possess deep-sea and pelagic like rod visual pigments with absorbance maxima between 479 and 484 nm. Finally, we have defined the five amino acid substitution events that determine the resulting absorbance spectra and associated absorbance maxima for the mysticete whale rod visual pigments examined here.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>22414424</pmid><doi>10.1017/S0952523812000107</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-5238 |
ispartof | Visual neuroscience, 2012-03, Vol.29 (2), p.95-103 |
issn | 0952-5238 1469-8714 |
language | eng |
recordid | cdi_proquest_miscellaneous_940837787 |
source | Cambridge Journals Online |
subjects | Amino Acid Sequence Animals Eschrichtius robustus Marine Megaptera novaeangliae Mysticetes Odontoceti Phylogeny Retinal Pigments - chemistry Retinal Pigments - genetics Retinal Rod Photoreceptor Cells - chemistry Rod Opsins - chemistry Rod Opsins - genetics Species Specificity Whales - classification Whales - genetics |
title | Deep-sea and pelagic rod visual pigments identified in the mysticete whales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-sea%20and%20pelagic%20rod%20visual%20pigments%20identified%20in%20the%20mysticete%20whales&rft.jtitle=Visual%20neuroscience&rft.au=BISCHOFF,%20NICOLE&rft.date=2012-03&rft.volume=29&rft.issue=2&rft.spage=95&rft.epage=103&rft.pages=95-103&rft.issn=0952-5238&rft.eissn=1469-8714&rft_id=info:doi/10.1017/S0952523812000107&rft_dat=%3Cproquest_cross%3E1008835888%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-b81a1f790fb03305e4e6b8cdbc8d0c99cf349dc7300dd5552f6646ab3ee0b4cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=944154612&rft_id=info:pmid/22414424&rft_cupid=10_1017_S0952523812000107&rfr_iscdi=true |