Loading…

Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression

We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predicto...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2012-03, Vol.68 (1), p.92-100
Main Authors: Burgette, Lane F., Reiter, Jerome P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493
cites cdi_FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493
container_end_page 100
container_issue 1
container_start_page 92
container_title Biometrics
container_volume 68
creator Burgette, Lane F.
Reiter, Jerome P.
description We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.
doi_str_mv 10.1111/j.1541-0420.2011.01639.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_948909493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434041</jstor_id><sourcerecordid>41434041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493</originalsourceid><addsrcrecordid>eNqNkEtv1DAURi0EokPhJwBRN6wSrh95eIPUjuhDdBjxqGBneZKbwSGJi520M_8eh5RZsMKba-sef74-hEQUEhrW2yahqaAxCAYJA0oToBmXye4RWRwaj8kCALKYC_r9iDzzvglHmQJ7So4YzQoJBSzIh5WtsDX9Njqt7tB5jM6MG35E63EobYc-ujM6Wtq-Nq7Tg3X76FyXoUafRt0PpsXoM24dem9s_5w8qXXr8cVDPSY35--_Li_j6_XF1fL0Oi5FATKuKhCayjLnvN7oMBCXHFlZ5IxSXXGGm1rippA5zUqtM10InWeItcAsYELyY_Jmzr119teIflCd8SW2re7Rjl5JET4nAxjIk3_Ixo6uD8MFSNCUg2QBKmaodNZ7h7W6dabTbq8oqEm3atRkVU1W1aRb_dGtduHqq4f8cdNhdbj4128A3s3AfVC1_-9gdXa1Xk3bEPByDmh8sH4IEFRwAYKGfjz3jR9wd-hr91NlOc9T9e3jhRIsTLNa5mriX898ra3SW2e8uvkSnk4BqMgLSPlv4-WvEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>944153092</pqid></control><display><type>article</type><title>Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Burgette, Lane F. ; Reiter, Jerome P.</creator><creatorcontrib>Burgette, Lane F. ; Reiter, Jerome P.</creatorcontrib><description>We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2011.01639.x</identifier><identifier>PMID: 21689080</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Bayes Theorem ; Bayesian analysis ; Bayesian inference ; Bayesian networks ; BIOMETRIC METHODOLOGY ; Biometrics ; biometry ; Birth Weight ; Causality ; Female ; Fetal Growth Retardation - epidemiology ; Gibbs sampling ; Humans ; Infant, Low Birth Weight ; Infant, Newborn ; Infant, Very Low Birth Weight ; Low birth weight ; Maternal Exposure - statistics &amp; numerical data ; Mathematical vectors ; Modeling ; Pregnancy ; pregnancy complications ; Prevalence ; Proportional Hazards Models ; Quantile regression ; Random variables ; Regression Analysis ; tobacco ; Tobacco Smoke Pollution - statistics &amp; numerical data ; Tobacco smoking</subject><ispartof>Biometrics, 2012-03, Vol.68 (1), p.92-100</ispartof><rights>2012 International Biometric Society</rights><rights>2011, The International Biometric Society</rights><rights>2011, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493</citedby><cites>FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434041$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434041$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21689080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burgette, Lane F.</creatorcontrib><creatorcontrib>Reiter, Jerome P.</creatorcontrib><title>Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.</description><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bayesian networks</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>biometry</subject><subject>Birth Weight</subject><subject>Causality</subject><subject>Female</subject><subject>Fetal Growth Retardation - epidemiology</subject><subject>Gibbs sampling</subject><subject>Humans</subject><subject>Infant, Low Birth Weight</subject><subject>Infant, Newborn</subject><subject>Infant, Very Low Birth Weight</subject><subject>Low birth weight</subject><subject>Maternal Exposure - statistics &amp; numerical data</subject><subject>Mathematical vectors</subject><subject>Modeling</subject><subject>Pregnancy</subject><subject>pregnancy complications</subject><subject>Prevalence</subject><subject>Proportional Hazards Models</subject><subject>Quantile regression</subject><subject>Random variables</subject><subject>Regression Analysis</subject><subject>tobacco</subject><subject>Tobacco Smoke Pollution - statistics &amp; numerical data</subject><subject>Tobacco smoking</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAURi0EokPhJwBRN6wSrh95eIPUjuhDdBjxqGBneZKbwSGJi520M_8eh5RZsMKba-sef74-hEQUEhrW2yahqaAxCAYJA0oToBmXye4RWRwaj8kCALKYC_r9iDzzvglHmQJ7So4YzQoJBSzIh5WtsDX9Njqt7tB5jM6MG35E63EobYc-ujM6Wtq-Nq7Tg3X76FyXoUafRt0PpsXoM24dem9s_5w8qXXr8cVDPSY35--_Li_j6_XF1fL0Oi5FATKuKhCayjLnvN7oMBCXHFlZ5IxSXXGGm1rippA5zUqtM10InWeItcAsYELyY_Jmzr119teIflCd8SW2re7Rjl5JET4nAxjIk3_Ixo6uD8MFSNCUg2QBKmaodNZ7h7W6dabTbq8oqEm3atRkVU1W1aRb_dGtduHqq4f8cdNhdbj4128A3s3AfVC1_-9gdXa1Xk3bEPByDmh8sH4IEFRwAYKGfjz3jR9wd-hr91NlOc9T9e3jhRIsTLNa5mriX898ra3SW2e8uvkSnk4BqMgLSPlv4-WvEQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Burgette, Lane F.</creator><creator>Reiter, Jerome P.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression</title><author>Burgette, Lane F. ; Reiter, Jerome P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bayesian networks</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>biometry</topic><topic>Birth Weight</topic><topic>Causality</topic><topic>Female</topic><topic>Fetal Growth Retardation - epidemiology</topic><topic>Gibbs sampling</topic><topic>Humans</topic><topic>Infant, Low Birth Weight</topic><topic>Infant, Newborn</topic><topic>Infant, Very Low Birth Weight</topic><topic>Low birth weight</topic><topic>Maternal Exposure - statistics &amp; numerical data</topic><topic>Mathematical vectors</topic><topic>Modeling</topic><topic>Pregnancy</topic><topic>pregnancy complications</topic><topic>Prevalence</topic><topic>Proportional Hazards Models</topic><topic>Quantile regression</topic><topic>Random variables</topic><topic>Regression Analysis</topic><topic>tobacco</topic><topic>Tobacco Smoke Pollution - statistics &amp; numerical data</topic><topic>Tobacco smoking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgette, Lane F.</creatorcontrib><creatorcontrib>Reiter, Jerome P.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgette, Lane F.</au><au>Reiter, Jerome P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2012-03</date><risdate>2012</risdate><volume>68</volume><issue>1</issue><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We describe a Bayesian quantile regression model that uses a confirmatory factor structure for part of the design matrix. This model is appropriate when the covariates are indicators of scientifically determined latent factors, and it is these latent factors that analysts seek to include as predictors in the quantile regression. We apply the model to a study of birth weights in which the effects of latent variables representing psychosocial health and actual tobacco usage on the lower quantiles of the response distribution are of interest. The models can be fit using an R package called factorQR.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>21689080</pmid><doi>10.1111/j.1541-0420.2011.01639.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2012-03, Vol.68 (1), p.92-100
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_948909493
source EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Bayes Theorem
Bayesian analysis
Bayesian inference
Bayesian networks
BIOMETRIC METHODOLOGY
Biometrics
biometry
Birth Weight
Causality
Female
Fetal Growth Retardation - epidemiology
Gibbs sampling
Humans
Infant, Low Birth Weight
Infant, Newborn
Infant, Very Low Birth Weight
Low birth weight
Maternal Exposure - statistics & numerical data
Mathematical vectors
Modeling
Pregnancy
pregnancy complications
Prevalence
Proportional Hazards Models
Quantile regression
Random variables
Regression Analysis
tobacco
Tobacco Smoke Pollution - statistics & numerical data
Tobacco smoking
title Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Adverse%20Birth%20Outcomes%20via%20Confirmatory%20Factor%20Quantile%20Regression&rft.jtitle=Biometrics&rft.au=Burgette,%20Lane%20F.&rft.date=2012-03&rft.volume=68&rft.issue=1&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2011.01639.x&rft_dat=%3Cjstor_proqu%3E41434041%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4809-dd04a19c733fba502393e2c87211ad32ebf9eb89716caa6a84a76eef4e6e2c493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=944153092&rft_id=info:pmid/21689080&rft_jstor_id=41434041&rfr_iscdi=true