Loading…

Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration

In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between t...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2012-03, Vol.37 (6), p.1020-1022
Main Authors: Xu, Xiaochuan, Subbaraman, Harish, Hosseini, Amir, Lin, Che-Yun, Kwong, David, Chen, Ray T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3
cites cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3
container_end_page 1022
container_issue 6
container_start_page 1020
container_title Optics letters
container_volume 37
creator Xu, Xiaochuan
Subbaraman, Harish
Hosseini, Amir
Lin, Che-Yun
Kwong, David
Chen, Ray T
description In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.
doi_str_mv 10.1364/OL.37.001020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_948909621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031323205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa2qqLtse-OMfGsPZBl_JFkfESoUaaU9QM-RP3eNEjvEToH_HlcLPfY00sxvnmbeQ-iMwJqwhl_utmvWrgEIUPiElqRmouKt4J_REghvKlELukCnKT0CQNMy9gUtKOW8oQSWaL7PchjxOPmQfdjj6HDyvdcxVEGGONhBTTLYSslkDR4PMcfgNTb2j9c24RhyxK63L171FqdZpTzJXAbPPh-wLJ002mDKalF0fj-XqY_hKzpxsk_223tdod83Px-uf1Xb3e3d9dW20oyyXBHaWKOE44ybVohW6IYBkW1tGOEbx7lpnACnLQNKpYGGU6GFsnKjFK_BsBX6ftQdp_g025S7wSdt-768FOfUCb4RIIoThfzxX5IAI-UmCnVBL46onmJKk3VdcW-Q02uBur-RdLttx9ruGEnBz9-VZzVY8w_-yIC9AevmiE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031323205</pqid></control><display><type>article</type><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><source>OSA_美国光学学会数据库1</source><creator>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</creator><creatorcontrib>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</creatorcontrib><description>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with &gt;90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.37.001020</identifier><identifier>PMID: 22446210</identifier><language>eng</language><publisher>United States</publisher><subject>Devices ; Nanostructure ; Photonics ; Printing ; Silicon substrates ; Transfer printing ; Wave propagation ; Waveguides</subject><ispartof>Optics letters, 2012-03, Vol.37 (6), p.1020-1022</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</citedby><cites>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22446210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaochuan</creatorcontrib><creatorcontrib>Subbaraman, Harish</creatorcontrib><creatorcontrib>Hosseini, Amir</creatorcontrib><creatorcontrib>Lin, Che-Yun</creatorcontrib><creatorcontrib>Kwong, David</creatorcontrib><creatorcontrib>Chen, Ray T</creatorcontrib><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with &gt;90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</description><subject>Devices</subject><subject>Nanostructure</subject><subject>Photonics</subject><subject>Printing</subject><subject>Silicon substrates</subject><subject>Transfer printing</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc1P3DAQxa2qqLtse-OMfGsPZBl_JFkfESoUaaU9QM-RP3eNEjvEToH_HlcLPfY00sxvnmbeQ-iMwJqwhl_utmvWrgEIUPiElqRmouKt4J_REghvKlELukCnKT0CQNMy9gUtKOW8oQSWaL7PchjxOPmQfdjj6HDyvdcxVEGGONhBTTLYSslkDR4PMcfgNTb2j9c24RhyxK63L171FqdZpTzJXAbPPh-wLJ002mDKalF0fj-XqY_hKzpxsk_223tdod83Px-uf1Xb3e3d9dW20oyyXBHaWKOE44ybVohW6IYBkW1tGOEbx7lpnACnLQNKpYGGU6GFsnKjFK_BsBX6ftQdp_g025S7wSdt-768FOfUCb4RIIoThfzxX5IAI-UmCnVBL46onmJKk3VdcW-Q02uBur-RdLttx9ruGEnBz9-VZzVY8w_-yIC9AevmiE4</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Xu, Xiaochuan</creator><creator>Subbaraman, Harish</creator><creator>Hosseini, Amir</creator><creator>Lin, Che-Yun</creator><creator>Kwong, David</creator><creator>Chen, Ray T</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><author>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Devices</topic><topic>Nanostructure</topic><topic>Photonics</topic><topic>Printing</topic><topic>Silicon substrates</topic><topic>Transfer printing</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaochuan</creatorcontrib><creatorcontrib>Subbaraman, Harish</creatorcontrib><creatorcontrib>Hosseini, Amir</creatorcontrib><creatorcontrib>Lin, Che-Yun</creatorcontrib><creatorcontrib>Kwong, David</creatorcontrib><creatorcontrib>Chen, Ray T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaochuan</au><au>Subbaraman, Harish</au><au>Hosseini, Amir</au><au>Lin, Che-Yun</au><au>Kwong, David</au><au>Chen, Ray T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>37</volume><issue>6</issue><spage>1020</spage><epage>1022</epage><pages>1020-1022</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with &gt;90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</abstract><cop>United States</cop><pmid>22446210</pmid><doi>10.1364/OL.37.001020</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2012-03, Vol.37 (6), p.1020-1022
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_948909621
source OSA_美国光学学会数据库1
subjects Devices
Nanostructure
Photonics
Printing
Silicon substrates
Transfer printing
Wave propagation
Waveguides
title Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stamp%20printing%20of%20silicon-nanomembrane-based%20photonic%20devices%20onto%20flexible%20substrates%20with%20a%20suspended%20configuration&rft.jtitle=Optics%20letters&rft.au=Xu,%20Xiaochuan&rft.date=2012-03-15&rft.volume=37&rft.issue=6&rft.spage=1020&rft.epage=1022&rft.pages=1020-1022&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.37.001020&rft_dat=%3Cproquest_cross%3E1031323205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031323205&rft_id=info:pmid/22446210&rfr_iscdi=true