Loading…
Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration
In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between t...
Saved in:
Published in: | Optics letters 2012-03, Vol.37 (6), p.1020-1022 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3 |
container_end_page | 1022 |
container_issue | 6 |
container_start_page | 1020 |
container_title | Optics letters |
container_volume | 37 |
creator | Xu, Xiaochuan Subbaraman, Harish Hosseini, Amir Lin, Che-Yun Kwong, David Chen, Ray T |
description | In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated. |
doi_str_mv | 10.1364/OL.37.001020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_948909621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031323205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</originalsourceid><addsrcrecordid>eNp9kc1P3DAQxa2qqLtse-OMfGsPZBl_JFkfESoUaaU9QM-RP3eNEjvEToH_HlcLPfY00sxvnmbeQ-iMwJqwhl_utmvWrgEIUPiElqRmouKt4J_REghvKlELukCnKT0CQNMy9gUtKOW8oQSWaL7PchjxOPmQfdjj6HDyvdcxVEGGONhBTTLYSslkDR4PMcfgNTb2j9c24RhyxK63L171FqdZpTzJXAbPPh-wLJ002mDKalF0fj-XqY_hKzpxsk_223tdod83Px-uf1Xb3e3d9dW20oyyXBHaWKOE44ybVohW6IYBkW1tGOEbx7lpnACnLQNKpYGGU6GFsnKjFK_BsBX6ftQdp_g025S7wSdt-768FOfUCb4RIIoThfzxX5IAI-UmCnVBL46onmJKk3VdcW-Q02uBur-RdLttx9ruGEnBz9-VZzVY8w_-yIC9AevmiE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031323205</pqid></control><display><type>article</type><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><source>OSA_美国光学学会数据库1</source><creator>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</creator><creatorcontrib>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</creatorcontrib><description>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.37.001020</identifier><identifier>PMID: 22446210</identifier><language>eng</language><publisher>United States</publisher><subject>Devices ; Nanostructure ; Photonics ; Printing ; Silicon substrates ; Transfer printing ; Wave propagation ; Waveguides</subject><ispartof>Optics letters, 2012-03, Vol.37 (6), p.1020-1022</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</citedby><cites>FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22446210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiaochuan</creatorcontrib><creatorcontrib>Subbaraman, Harish</creatorcontrib><creatorcontrib>Hosseini, Amir</creatorcontrib><creatorcontrib>Lin, Che-Yun</creatorcontrib><creatorcontrib>Kwong, David</creatorcontrib><creatorcontrib>Chen, Ray T</creatorcontrib><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</description><subject>Devices</subject><subject>Nanostructure</subject><subject>Photonics</subject><subject>Printing</subject><subject>Silicon substrates</subject><subject>Transfer printing</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc1P3DAQxa2qqLtse-OMfGsPZBl_JFkfESoUaaU9QM-RP3eNEjvEToH_HlcLPfY00sxvnmbeQ-iMwJqwhl_utmvWrgEIUPiElqRmouKt4J_REghvKlELukCnKT0CQNMy9gUtKOW8oQSWaL7PchjxOPmQfdjj6HDyvdcxVEGGONhBTTLYSslkDR4PMcfgNTb2j9c24RhyxK63L171FqdZpTzJXAbPPh-wLJ002mDKalF0fj-XqY_hKzpxsk_223tdod83Px-uf1Xb3e3d9dW20oyyXBHaWKOE44ybVohW6IYBkW1tGOEbx7lpnACnLQNKpYGGU6GFsnKjFK_BsBX6ftQdp_g025S7wSdt-768FOfUCb4RIIoThfzxX5IAI-UmCnVBL46onmJKk3VdcW-Q02uBur-RdLttx9ruGEnBz9-VZzVY8w_-yIC9AevmiE4</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Xu, Xiaochuan</creator><creator>Subbaraman, Harish</creator><creator>Hosseini, Amir</creator><creator>Lin, Che-Yun</creator><creator>Kwong, David</creator><creator>Chen, Ray T</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</title><author>Xu, Xiaochuan ; Subbaraman, Harish ; Hosseini, Amir ; Lin, Che-Yun ; Kwong, David ; Chen, Ray T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Devices</topic><topic>Nanostructure</topic><topic>Photonics</topic><topic>Printing</topic><topic>Silicon substrates</topic><topic>Transfer printing</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaochuan</creatorcontrib><creatorcontrib>Subbaraman, Harish</creatorcontrib><creatorcontrib>Hosseini, Amir</creatorcontrib><creatorcontrib>Lin, Che-Yun</creatorcontrib><creatorcontrib>Kwong, David</creatorcontrib><creatorcontrib>Chen, Ray T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaochuan</au><au>Subbaraman, Harish</au><au>Hosseini, Amir</au><au>Lin, Che-Yun</au><au>Kwong, David</au><au>Chen, Ray T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>37</volume><issue>6</issue><spage>1020</spage><epage>1022</epage><pages>1020-1022</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and up to 5.7 cm long SiNM-based waveguides are transferred to flexible Kapton films with >90% transfer yield. The propagation loss of the transferred waveguides is measured to be ~1.1 dB/cm. Scalability of this approach to transfer intricate structures, such as photonic crystal waveguides and multimode interference couplers with a minimum feature size of 200 nm and 2 μm, respectively, is also demonstrated.</abstract><cop>United States</cop><pmid>22446210</pmid><doi>10.1364/OL.37.001020</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2012-03, Vol.37 (6), p.1020-1022 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_948909621 |
source | OSA_美国光学学会数据库1 |
subjects | Devices Nanostructure Photonics Printing Silicon substrates Transfer printing Wave propagation Waveguides |
title | Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stamp%20printing%20of%20silicon-nanomembrane-based%20photonic%20devices%20onto%20flexible%20substrates%20with%20a%20suspended%20configuration&rft.jtitle=Optics%20letters&rft.au=Xu,%20Xiaochuan&rft.date=2012-03-15&rft.volume=37&rft.issue=6&rft.spage=1020&rft.epage=1022&rft.pages=1020-1022&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.37.001020&rft_dat=%3Cproquest_cross%3E1031323205%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-126edb9f434d79979c6301a75d3148f44d6f90fce3022ad06429c9bea8bb450d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031323205&rft_id=info:pmid/22446210&rfr_iscdi=true |