Loading…

sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato

Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restri...

Full description

Saved in:
Bibliographic Details
Published in:Transgenic research 2012-04, Vol.21 (2), p.265-278
Main Authors: Noh, Seol Ah, Lee, Haeng-Soon, Huh, Gyung Hye, Oh, Mi-Joung, Paek, Kyung-Hee, Shin, Jeong Sheop, Bae, Jung Myung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903
cites cdi_FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903
container_end_page 278
container_issue 2
container_start_page 265
container_title Transgenic research
container_volume 21
creator Noh, Seol Ah
Lee, Haeng-Soon
Huh, Gyung Hye
Oh, Mi-Joung
Paek, Kyung-Hee
Shin, Jeong Sheop
Bae, Jung Myung
description Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. ‘White Star’) and characterized its activity in transgenic Arabidopsis, carrot, and potato using the β-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 μM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5′ deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.
doi_str_mv 10.1007/s11248-011-9528-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_953212864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1008846790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EokPhB7ABqxIqixr8ih_LqpSHVAmJ0nXkONejVDNxsB3x-PU4ZKASi64cyec79zofQs8ZfcMo1W8zY1waQhkjtuGGyAdowxotiBXKPEQbahUnxjB7hJ7kfEtpTRnxGB1xphSVhm3Qr_wdoEyxuBLx9Zd3DE8p7mOBhH0cA6SMc0lx3OIUYyFnuLjp8OXGHpe5g0TyBH4Ig8fwY0qQ8xBHPIz4PLlu6OOUh3yGvUspljW1jnuKHgW3y_DscB6jm_eXXy8-kqvPHz5dnF8RLxtdCG86awVnTDWGcq2ggc4orkIfuBPQdT44qsEJ0ffaNtoHoByA9dAHGSwVx-h09dbFv82QS7sfsofdzo0Q59zaptq5UbKSr-8ll99npNJ_pCf_obdxTmN9R2slF8ZwqivEVsinmHOC0E5p2Lv0s5oWmW7XBtvaYLs02C47vDiI524P_b_E38oq8OoAuOzdLiQ3-iHfcY2yuhHLcL5yuV6NW0h3G943_eUaCi62bpuq-OaaUyYppcowLcVvhb685A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>942388207</pqid></control><display><type>article</type><title>sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato</title><source>Springer Nature</source><creator>Noh, Seol Ah ; Lee, Haeng-Soon ; Huh, Gyung Hye ; Oh, Mi-Joung ; Paek, Kyung-Hee ; Shin, Jeong Sheop ; Bae, Jung Myung</creator><creatorcontrib>Noh, Seol Ah ; Lee, Haeng-Soon ; Huh, Gyung Hye ; Oh, Mi-Joung ; Paek, Kyung-Hee ; Shin, Jeong Sheop ; Bae, Jung Myung</creatorcontrib><description>Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. ‘White Star’) and characterized its activity in transgenic Arabidopsis, carrot, and potato using the β-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 μM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5′ deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-011-9528-4</identifier><identifier>PMID: 21660481</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>5' Untranslated Regions ; Agrobacterium tumefaciens - genetics ; Agrobacterium tumefaciens - metabolism ; Animal Genetics and Genomics ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; beta -Glucuronidase ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; carrots ; Culture Media - metabolism ; Cyclopentanes - pharmacology ; Daucus ; Daucus carota - genetics ; Daucus carota - growth &amp; development ; Daucus carota - metabolism ; DNA, Plant - genetics ; DNA, Plant - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene deletion ; gene expression ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Genetic Engineering ; Genetic technics ; Glucuronidase - genetics ; Glucuronidase - metabolism ; GUS gene ; indole acetic acid ; Indoleacetic Acids - pharmacology ; Ipomoea batatas ; Ipomoea batatas - genetics ; Ipomoea batatas - metabolism ; Life Sciences ; Methods. Procedures. Technologies ; molecular farming ; Molecular Medicine ; Original Paper ; Oxylipins - pharmacology ; Phloem ; Phloem - cytology ; Phloem - metabolism ; Plant Genetics and Genomics ; Plant Roots - genetics ; Plant Roots - growth &amp; development ; Plant Roots - metabolism ; Plant Tubers - genetics ; Plant Tubers - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - growth &amp; development ; Plants, Genetically Modified - metabolism ; potatoes ; promoter regions ; Promoter Regions, Genetic ; Promoters ; recombinant proteins ; Reporter gene ; reporter genes ; Roots ; secondary phloem ; secondary xylem ; Solanum tuberosum ; Solanum tuberosum - genetics ; Solanum tuberosum - growth &amp; development ; Solanum tuberosum - metabolism ; Staining and Labeling ; storage organs ; sweet potatoes ; Time Factors ; Transcription Initiation Site ; Transformation, Genetic ; Transgenic animals and transgenic plants ; Transgenics ; Tubers ; Xylem ; Xylem - cytology ; Xylem - metabolism</subject><ispartof>Transgenic research, 2012-04, Vol.21 (2), p.265-278</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903</citedby><cites>FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25697537$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21660481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noh, Seol Ah</creatorcontrib><creatorcontrib>Lee, Haeng-Soon</creatorcontrib><creatorcontrib>Huh, Gyung Hye</creatorcontrib><creatorcontrib>Oh, Mi-Joung</creatorcontrib><creatorcontrib>Paek, Kyung-Hee</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><creatorcontrib>Bae, Jung Myung</creatorcontrib><title>sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. ‘White Star’) and characterized its activity in transgenic Arabidopsis, carrot, and potato using the β-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 μM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5′ deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.</description><subject>5' Untranslated Regions</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Agrobacterium tumefaciens - metabolism</subject><subject>Animal Genetics and Genomics</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>beta -Glucuronidase</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>carrots</subject><subject>Culture Media - metabolism</subject><subject>Cyclopentanes - pharmacology</subject><subject>Daucus</subject><subject>Daucus carota - genetics</subject><subject>Daucus carota - growth &amp; development</subject><subject>Daucus carota - metabolism</subject><subject>DNA, Plant - genetics</subject><subject>DNA, Plant - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene deletion</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Glucuronidase - genetics</subject><subject>Glucuronidase - metabolism</subject><subject>GUS gene</subject><subject>indole acetic acid</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Ipomoea batatas</subject><subject>Ipomoea batatas - genetics</subject><subject>Ipomoea batatas - metabolism</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>molecular farming</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Oxylipins - pharmacology</subject><subject>Phloem</subject><subject>Phloem - cytology</subject><subject>Phloem - metabolism</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - metabolism</subject><subject>Plant Tubers - genetics</subject><subject>Plant Tubers - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>potatoes</subject><subject>promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters</subject><subject>recombinant proteins</subject><subject>Reporter gene</subject><subject>reporter genes</subject><subject>Roots</subject><subject>secondary phloem</subject><subject>secondary xylem</subject><subject>Solanum tuberosum</subject><subject>Solanum tuberosum - genetics</subject><subject>Solanum tuberosum - growth &amp; development</subject><subject>Solanum tuberosum - metabolism</subject><subject>Staining and Labeling</subject><subject>storage organs</subject><subject>sweet potatoes</subject><subject>Time Factors</subject><subject>Transcription Initiation Site</subject><subject>Transformation, Genetic</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Tubers</subject><subject>Xylem</subject><subject>Xylem - cytology</subject><subject>Xylem - metabolism</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAURi0EokPhB7ABqxIqixr8ih_LqpSHVAmJ0nXkONejVDNxsB3x-PU4ZKASi64cyec79zofQs8ZfcMo1W8zY1waQhkjtuGGyAdowxotiBXKPEQbahUnxjB7hJ7kfEtpTRnxGB1xphSVhm3Qr_wdoEyxuBLx9Zd3DE8p7mOBhH0cA6SMc0lx3OIUYyFnuLjp8OXGHpe5g0TyBH4Ig8fwY0qQ8xBHPIz4PLlu6OOUh3yGvUspljW1jnuKHgW3y_DscB6jm_eXXy8-kqvPHz5dnF8RLxtdCG86awVnTDWGcq2ggc4orkIfuBPQdT44qsEJ0ffaNtoHoByA9dAHGSwVx-h09dbFv82QS7sfsofdzo0Q59zaptq5UbKSr-8ll99npNJ_pCf_obdxTmN9R2slF8ZwqivEVsinmHOC0E5p2Lv0s5oWmW7XBtvaYLs02C47vDiI524P_b_E38oq8OoAuOzdLiQ3-iHfcY2yuhHLcL5yuV6NW0h3G943_eUaCi62bpuq-OaaUyYppcowLcVvhb685A</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Noh, Seol Ah</creator><creator>Lee, Haeng-Soon</creator><creator>Huh, Gyung Hye</creator><creator>Oh, Mi-Joung</creator><creator>Paek, Kyung-Hee</creator><creator>Shin, Jeong Sheop</creator><creator>Bae, Jung Myung</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20120401</creationdate><title>sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato</title><author>Noh, Seol Ah ; Lee, Haeng-Soon ; Huh, Gyung Hye ; Oh, Mi-Joung ; Paek, Kyung-Hee ; Shin, Jeong Sheop ; Bae, Jung Myung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>5' Untranslated Regions</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Agrobacterium tumefaciens - metabolism</topic><topic>Animal Genetics and Genomics</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>beta -Glucuronidase</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>carrots</topic><topic>Culture Media - metabolism</topic><topic>Cyclopentanes - pharmacology</topic><topic>Daucus</topic><topic>Daucus carota - genetics</topic><topic>Daucus carota - growth &amp; development</topic><topic>Daucus carota - metabolism</topic><topic>DNA, Plant - genetics</topic><topic>DNA, Plant - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene deletion</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Glucuronidase - genetics</topic><topic>Glucuronidase - metabolism</topic><topic>GUS gene</topic><topic>indole acetic acid</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Ipomoea batatas</topic><topic>Ipomoea batatas - genetics</topic><topic>Ipomoea batatas - metabolism</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>molecular farming</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Oxylipins - pharmacology</topic><topic>Phloem</topic><topic>Phloem - cytology</topic><topic>Phloem - metabolism</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - metabolism</topic><topic>Plant Tubers - genetics</topic><topic>Plant Tubers - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>potatoes</topic><topic>promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters</topic><topic>recombinant proteins</topic><topic>Reporter gene</topic><topic>reporter genes</topic><topic>Roots</topic><topic>secondary phloem</topic><topic>secondary xylem</topic><topic>Solanum tuberosum</topic><topic>Solanum tuberosum - genetics</topic><topic>Solanum tuberosum - growth &amp; development</topic><topic>Solanum tuberosum - metabolism</topic><topic>Staining and Labeling</topic><topic>storage organs</topic><topic>sweet potatoes</topic><topic>Time Factors</topic><topic>Transcription Initiation Site</topic><topic>Transformation, Genetic</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Tubers</topic><topic>Xylem</topic><topic>Xylem - cytology</topic><topic>Xylem - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noh, Seol Ah</creatorcontrib><creatorcontrib>Lee, Haeng-Soon</creatorcontrib><creatorcontrib>Huh, Gyung Hye</creatorcontrib><creatorcontrib>Oh, Mi-Joung</creatorcontrib><creatorcontrib>Paek, Kyung-Hee</creatorcontrib><creatorcontrib>Shin, Jeong Sheop</creatorcontrib><creatorcontrib>Bae, Jung Myung</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Seol Ah</au><au>Lee, Haeng-Soon</au><au>Huh, Gyung Hye</au><au>Oh, Mi-Joung</au><au>Paek, Kyung-Hee</au><au>Shin, Jeong Sheop</au><au>Bae, Jung Myung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2012-04-01</date><risdate>2012</risdate><volume>21</volume><issue>2</issue><spage>265</spage><epage>278</epage><pages>265-278</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Harvestable, starch-storing organs of plants, such as fleshy taproots and tubers, are important agronomic products that are also suitable target organs for use in the molecular farming of recombinant proteins due to their strong sink strength. To exploit a promoter directing strong expression restricted to these storage organs, we isolated the promoter region (3.0 kb) of SRD1 from sweetpotato (Ipomoea batatas cv. ‘White Star’) and characterized its activity in transgenic Arabidopsis, carrot, and potato using the β-glucuronidase (GUS) gene (uidA) as a reporter gene. The SRD1 promoter conferred root-specific expression in transgenic Arabidopsis, with SRD1 promoter activity increasing in response to exogenous IAA. A time-course study of the effect of IAA (50 μM) revealed a maximum increase in SRD1 promoter activity at 24 h post-treatment initiation. A serial 5′ deletion analysis of the SRD1 promoter identified regions related to IAA-inducible expression as well as regions containing positive and negative elements, respectively, controlling the expression level. In transgenic carrot, the SRD1 promoter mediated strong taproot-specific expression, as evidenced by GUS staining being strong in almost the entire taproot, including secondary phloem, secondary xylem and vascular cambium. The activity of the SRD1 promoter gradually increased with increasing diameter of the taproot in the transgenic carrot and was 10.71-fold higher than that of the CaMV35S promoter. The SRD1 promoter also directed strong tuber-specific expression in transgenic potato. Taken together, these results demonstrate that the SRD1 promoter directs strong expression restricted to the underground storage organs, such as fleshy taproots and tubers, as well as fibrous root tissues.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>21660481</pmid><doi>10.1007/s11248-011-9528-4</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2012-04, Vol.21 (2), p.265-278
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_953212864
source Springer Nature
subjects 5' Untranslated Regions
Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - metabolism
Animal Genetics and Genomics
Arabidopsis
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
beta -Glucuronidase
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biotechnology
carrots
Culture Media - metabolism
Cyclopentanes - pharmacology
Daucus
Daucus carota - genetics
Daucus carota - growth & development
Daucus carota - metabolism
DNA, Plant - genetics
DNA, Plant - metabolism
Fundamental and applied biological sciences. Psychology
Gene deletion
gene expression
Gene Expression Regulation, Plant
Genes, Plant
Genes, Reporter
Genetic Engineering
Genetic technics
Glucuronidase - genetics
Glucuronidase - metabolism
GUS gene
indole acetic acid
Indoleacetic Acids - pharmacology
Ipomoea batatas
Ipomoea batatas - genetics
Ipomoea batatas - metabolism
Life Sciences
Methods. Procedures. Technologies
molecular farming
Molecular Medicine
Original Paper
Oxylipins - pharmacology
Phloem
Phloem - cytology
Phloem - metabolism
Plant Genetics and Genomics
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - metabolism
Plant Tubers - genetics
Plant Tubers - metabolism
Plants, Genetically Modified - genetics
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
potatoes
promoter regions
Promoter Regions, Genetic
Promoters
recombinant proteins
Reporter gene
reporter genes
Roots
secondary phloem
secondary xylem
Solanum tuberosum
Solanum tuberosum - genetics
Solanum tuberosum - growth & development
Solanum tuberosum - metabolism
Staining and Labeling
storage organs
sweet potatoes
Time Factors
Transcription Initiation Site
Transformation, Genetic
Transgenic animals and transgenic plants
Transgenics
Tubers
Xylem
Xylem - cytology
Xylem - metabolism
title sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=sweetpotato%20SRD1%20promoter%20confers%20strong%20root-,%20taproot-,%20and%20tuber-specific%20expression%20in%20Arabidopsis,%20carrot,%20and%20potato&rft.jtitle=Transgenic%20research&rft.au=Noh,%20Seol%20Ah&rft.date=2012-04-01&rft.volume=21&rft.issue=2&rft.spage=265&rft.epage=278&rft.pages=265-278&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-011-9528-4&rft_dat=%3Cproquest_cross%3E1008846790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-25b9932116580276e5eb8626fdf2a3ebbcfa07ea33dd7957cfe02ee1dedf4f903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=942388207&rft_id=info:pmid/21660481&rfr_iscdi=true