Loading…

A new approach in virtopsy: Postmortem ventilation in multislice computed tomography

Abstract Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, fi...

Full description

Saved in:
Bibliographic Details
Published in:Legal medicine (Tokyo, Japan) Japan), 2010-11, Vol.12 (6), p.276-279
Main Authors: Germerott, Tanja, Preiss, Ulrich S, Ebert, Lars C, Ruder, Thomas D, Ross, Steffen, Flach, Patricia M, Ampanozi, Garyfalia, Filograna, Laura, Thali, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, five corpses were ventilated using a mechanical ventilator with a pressure of 40 mbar (40.8 cm H2 O). The ventilation was performed via an endotracheal tube, a larynx mask or a continuous positive airway pressure mask. Postmortem computed tomographic images of the lungs before and with a ventilation of 40 mbar (40.8 cm H2 O) were evaluated and the lung volumes were measured with segmentation software. Postmortem ventilation led to a clearly visible decrease of both the density in the dependant parts of the lungs and ground glass attenuation, whereas consolidated areas remained unchanged. Furthermore, a mean increase in the lung volume of 2.10 l was seen. Pathological changes such as septal thickening or pulmonary nodules in the lung parenchyma became more detectable with postmortem ventilation. Intracorporal postmortem mechanical ventilation of the lungs appears to be an effective method for enhancing detection of small pathologies of the lung parenchyma as well as for discriminating between consolidation, ground glass attenuation and position-dependent density.
ISSN:1344-6223
1873-4162
DOI:10.1016/j.legalmed.2010.07.001