Loading…

Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution

The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome dup...

Full description

Saved in:
Bibliographic Details
Published in:Chromosome research 2010-12, Vol.18 (8), p.897-907
Main Authors: Patel, Vidushi S, Ezaz, Tariq, Deakin, Janine E, Marshall Graves, Jennifer A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3
cites cdi_FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3
container_end_page 907
container_issue 8
container_start_page 897
container_title Chromosome research
container_volume 18
creator Patel, Vidushi S
Ezaz, Tariq
Deakin, Janine E
Marshall Graves, Jennifer A
description The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3′ end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5′ end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.
doi_str_mv 10.1007/s10577-010-9164-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_954599983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>820791423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQRi0EopfCA7AB71gZPJ7EP0tUlYJUiQV0bTnJ5JIqiYPtIPFY8CB9JnKVgljBytbM-b7FHMaeg3wNUpo3GWRtjJAghQNdifoBO0BtUGhbuYfsIJ02Arf_GXuS862U0mIFj9mZAgBtZH1g6WqMzTDzI83Ec0lrW9ZEfJsEnmgpw7iN12WJqWRevhAvKcx5iXkoQ5zDyKfY0cj7mHiY5iEW4nc_BA9zx-9-iuNf5fQtjusp9JQ96sOY6dn9e85u3l1-vngvrj9efbh4ey1adK4IsDZoJbVTihB7cEhUBx2g6foQVIVd0zgIDhutsMeqtdg4S0jaKqNtwHP2au9dUvy6Ui5-GnJL4xhmimv2rq5q55zF_5JWSeOgUicSdrJNMedEvV_SMIX03YP0Jyd-d-I3J_7kxNdb5sV9-9pM1P1J_JawAWoH8raaj5T8bVzTdtz8z9aXe6gP0YdjGrK_-aQkoITtYmgM_gLRh6KB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>820791423</pqid></control><display><type>article</type><title>Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution</title><source>Springer Nature</source><creator>Patel, Vidushi S ; Ezaz, Tariq ; Deakin, Janine E ; Marshall Graves, Jennifer A</creator><creatorcontrib>Patel, Vidushi S ; Ezaz, Tariq ; Deakin, Janine E ; Marshall Graves, Jennifer A</creatorcontrib><description>The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3′ end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5′ end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.</description><identifier>ISSN: 0967-3849</identifier><identifier>EISSN: 1573-6849</identifier><identifier>DOI: 10.1007/s10577-010-9164-5</identifier><identifier>PMID: 21116705</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Agamidae ; alpha-Globins - genetics ; Amniota ; Animal Genetics and Genomics ; Animals ; beta-Globins - genetics ; Biomedical and Life Sciences ; Cell Biology ; Chromosome Mapping ; Chromosomes - genetics ; comparative mapping ; evolution ; Evolution, Molecular ; Gene Library ; Gene Order ; Globins - genetics ; hemoglobin ; Human Genetics ; Lacertilia ; Life Sciences ; lizards ; Lizards - genetics ; Models, Genetic ; Multigene Family - genetics ; Plant Genetics and Genomics ; Pogona vitticeps</subject><ispartof>Chromosome research, 2010-12, Vol.18 (8), p.897-907</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3</citedby><cites>FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21116705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Vidushi S</creatorcontrib><creatorcontrib>Ezaz, Tariq</creatorcontrib><creatorcontrib>Deakin, Janine E</creatorcontrib><creatorcontrib>Marshall Graves, Jennifer A</creatorcontrib><title>Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution</title><title>Chromosome research</title><addtitle>Chromosome Res</addtitle><addtitle>Chromosome Res</addtitle><description>The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3′ end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5′ end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.</description><subject>Agamidae</subject><subject>alpha-Globins - genetics</subject><subject>Amniota</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>beta-Globins - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes - genetics</subject><subject>comparative mapping</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Library</subject><subject>Gene Order</subject><subject>Globins - genetics</subject><subject>hemoglobin</subject><subject>Human Genetics</subject><subject>Lacertilia</subject><subject>Life Sciences</subject><subject>lizards</subject><subject>Lizards - genetics</subject><subject>Models, Genetic</subject><subject>Multigene Family - genetics</subject><subject>Plant Genetics and Genomics</subject><subject>Pogona vitticeps</subject><issn>0967-3849</issn><issn>1573-6849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1TAQRi0EopfCA7AB71gZPJ7EP0tUlYJUiQV0bTnJ5JIqiYPtIPFY8CB9JnKVgljBytbM-b7FHMaeg3wNUpo3GWRtjJAghQNdifoBO0BtUGhbuYfsIJ02Arf_GXuS862U0mIFj9mZAgBtZH1g6WqMzTDzI83Ec0lrW9ZEfJsEnmgpw7iN12WJqWRevhAvKcx5iXkoQ5zDyKfY0cj7mHiY5iEW4nc_BA9zx-9-iuNf5fQtjusp9JQ96sOY6dn9e85u3l1-vngvrj9efbh4ey1adK4IsDZoJbVTihB7cEhUBx2g6foQVIVd0zgIDhutsMeqtdg4S0jaKqNtwHP2au9dUvy6Ui5-GnJL4xhmimv2rq5q55zF_5JWSeOgUicSdrJNMedEvV_SMIX03YP0Jyd-d-I3J_7kxNdb5sV9-9pM1P1J_JawAWoH8raaj5T8bVzTdtz8z9aXe6gP0YdjGrK_-aQkoITtYmgM_gLRh6KB</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Patel, Vidushi S</creator><creator>Ezaz, Tariq</creator><creator>Deakin, Janine E</creator><creator>Marshall Graves, Jennifer A</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20101201</creationdate><title>Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution</title><author>Patel, Vidushi S ; Ezaz, Tariq ; Deakin, Janine E ; Marshall Graves, Jennifer A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agamidae</topic><topic>alpha-Globins - genetics</topic><topic>Amniota</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>beta-Globins - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes - genetics</topic><topic>comparative mapping</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Library</topic><topic>Gene Order</topic><topic>Globins - genetics</topic><topic>hemoglobin</topic><topic>Human Genetics</topic><topic>Lacertilia</topic><topic>Life Sciences</topic><topic>lizards</topic><topic>Lizards - genetics</topic><topic>Models, Genetic</topic><topic>Multigene Family - genetics</topic><topic>Plant Genetics and Genomics</topic><topic>Pogona vitticeps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Vidushi S</creatorcontrib><creatorcontrib>Ezaz, Tariq</creatorcontrib><creatorcontrib>Deakin, Janine E</creatorcontrib><creatorcontrib>Marshall Graves, Jennifer A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Chromosome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Vidushi S</au><au>Ezaz, Tariq</au><au>Deakin, Janine E</au><au>Marshall Graves, Jennifer A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution</atitle><jtitle>Chromosome research</jtitle><stitle>Chromosome Res</stitle><addtitle>Chromosome Res</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>18</volume><issue>8</issue><spage>897</spage><epage>907</epage><pages>897-907</pages><issn>0967-3849</issn><eissn>1573-6849</eissn><abstract>The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3′ end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5′ end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>21116705</pmid><doi>10.1007/s10577-010-9164-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3849
ispartof Chromosome research, 2010-12, Vol.18 (8), p.897-907
issn 0967-3849
1573-6849
language eng
recordid cdi_proquest_miscellaneous_954599983
source Springer Nature
subjects Agamidae
alpha-Globins - genetics
Amniota
Animal Genetics and Genomics
Animals
beta-Globins - genetics
Biomedical and Life Sciences
Cell Biology
Chromosome Mapping
Chromosomes - genetics
comparative mapping
evolution
Evolution, Molecular
Gene Library
Gene Order
Globins - genetics
hemoglobin
Human Genetics
Lacertilia
Life Sciences
lizards
Lizards - genetics
Models, Genetic
Multigene Family - genetics
Plant Genetics and Genomics
Pogona vitticeps
title Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Globin%20gene%20structure%20in%20a%20reptile%20supports%20the%20transpositional%20model%20for%20amniote%20%CE%B1-%20and%20%CE%B2-globin%20gene%20evolution&rft.jtitle=Chromosome%20research&rft.au=Patel,%20Vidushi%20S&rft.date=2010-12-01&rft.volume=18&rft.issue=8&rft.spage=897&rft.epage=907&rft.pages=897-907&rft.issn=0967-3849&rft.eissn=1573-6849&rft_id=info:doi/10.1007/s10577-010-9164-5&rft_dat=%3Cproquest_cross%3E820791423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-188a6206922e33f193ee5a6a1bdfaa243dbb91a93b623f34c83b98e3e682768a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=820791423&rft_id=info:pmid/21116705&rfr_iscdi=true