Loading…
Role of the premotor cortex in leg selection and anticipatory postural adjustments associated with a rapid stepping task in patients with stroke
Abstract The premotor cortex (PMC) plays an important role in selecting and preparing for movement. This study investigates how stroke-induced PMC lesions affect stepping leg selection and anticipatory postural adjustments (APAs) preparation. Fifteen hemi-paretic patients (eight with PMC lesions (PM...
Saved in:
Published in: | Gait & posture 2010-10, Vol.32 (4), p.487-493 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The premotor cortex (PMC) plays an important role in selecting and preparing for movement. This study investigates how stroke-induced PMC lesions affect stepping leg selection and anticipatory postural adjustments (APAs) preparation. Fifteen hemi-paretic patients (eight with PMC lesions (PMCLesion ) and seven PMC spared (PMCSpared )) and eight age- and sex-matched healthy adults participated in the study. The subjects performed rapid forward stepping with the right or left leg under simple and choice reaction time conditions. The percentage of trials in which the subject showed the correct initial vertical ground reaction force pattern before lift-off of the stepping leg indicated the accuracy in selecting the designated stepping leg. The latency of bilateral contractions in the tibialis anterior (TA) and the reaction time (RT) of the stepping leg represented the time needed to prepare for stepping-related APAs and stepping movement, respectively. All three groups demonstrated a similar rate of accuracy of the stepping leg selection under both conditions. However, in both conditions, the PMCLesion group exhibited a longer RT and TA contraction latency of the affected leg than the healthy and PMCSpared groups. The PMCLesion group also presented a longer TA contraction latency of the unaffected leg than the healthy group in both conditions. These results suggest that the PMC is involved in APAs associated with leg stepping movement and that a PMC lesion in one hemisphere impairs APAs of both the contralateral and ipsilateral legs during stepping. |
---|---|
ISSN: | 0966-6362 1879-2219 |
DOI: | 10.1016/j.gaitpost.2010.07.007 |