Loading…

The upper limit of physiological cardiac hypertrophy in elite male and female athletes: the British experience

Establishment of upper normal limits of physiological hypertrophy in response to physical training is important in the differentiation of physiological and pathological left ventricular hypertrophy. The genetic differences that exist in the adaptive response of the heart to physical training and the...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology 2004-08, Vol.92 (4-5), p.592-597
Main Authors: Whyte, G P, George, K, Sharma, S, Firoozi, S, Stephens, N, Senior, R, McKenna, W J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Establishment of upper normal limits of physiological hypertrophy in response to physical training is important in the differentiation of physiological and pathological left ventricular hypertrophy. The genetic differences that exist in the adaptive response of the heart to physical training and the causes of sudden cardiac death in young athletes indicate the need for population-specific normal values. Between September 1994 and December 2001, 442 (306 male, 136 female) elite British athletes from 13 sports were profiled. Standard two-dimensional guided M-mode and Doppler echocardiography were employed to evaluate left ventricular morphology and function. Eleven (2.5%) athletes, competing in a range of sports including judo, skiing, cycling, triathlon, rugby and tennis, presented with a wall thickness >13 mm, commensurate with a diagnosis of hypertrophic cardiomyopathy. Eighteen (5.8%) male athletes presented with a left ventricular internal diameter during diastole (LVIDd) >60 mm, with an upper limit of 65 mm. Of the 136 female athletes, none where found to have a maximum wall thickness >11 mm. Left ventricular internal diameter was
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-004-1052-2