Loading…

Air temperature trend and the impact on winter wheat phenology in Romania

Air temperature variability and trends in Romania were analysed using monthly, seasonal, and annual datasets. Temperature data of winter wheat season were also analysed. The Mann-Kendall test, Sen’s slope estimate, the sequential version of the Mann-Kendall test, the Pettitt test and spatial and tem...

Full description

Saved in:
Bibliographic Details
Published in:Climatic change 2012-03, Vol.111 (2), p.393-410
Main Authors: Croitoru, Adina-Eliza, Holobaca, Iulian-Horia, Lazar, Catalin, Moldovan, Florin, Imbroane, Alexandru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Air temperature variability and trends in Romania were analysed using monthly, seasonal, and annual datasets. Temperature data of winter wheat season were also analysed. The Mann-Kendall test, Sen’s slope estimate, the sequential version of the Mann-Kendall test, the Pettitt test and spatial and temporal hierarchical cluster analyses were used. First, the datasets were checked for changing points. The 106-year period was divided into two long periods of 100 years each to verify the importance of a very short interval in changing of general trends; after that it was divided into three shorter periods of 35–36 years each. The main conclusions are as follows: the 6 years making up the difference between the two long periods are very important in the context of the recent global warming; the three shorter periods analysis indicate some fluctuations rather than continuous warming. The latest short period is the most relevant for global warming. Spatial hierarchical cluster analysis indicated the existence of two distinctive groups. One of them, which includes stations in the south-east part of the country, seems to be influenced by the Black Sea surface temperature. Temporal hierarchical cluster analysis reveals that annual data series have the closest relation with the summer data series. Further, the impact of temperature changes on winter wheat phenology was determined using a phenology simulation performed with the model from the Decision Support System for Agrotechnology Transfer v. 4.0.2.0 platform. Earlier occurrences of anthesis and maturity were noticed for several regions in the country.
ISSN:0165-0009
1573-1480
DOI:10.1007/s10584-011-0133-6