Loading…

Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome

Angelman syndrome (AS) is a neurodevelopmental disorder caused due to deletions or loss-of-function mutations in maternally inherited UBE3A. Ube3a functions as an ubiquitin ligase as well as a transcriptional coactivator of steroid hormone receptors. However, the mechanisms by which maternal Ube3a d...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2012-04, Vol.21 (8), p.1824-1834
Main Authors: GODAVARTHI, Swetha K, DEY, Parthanarayan, MAHESHWARI, Megha, JANA, Nihar Ranjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Angelman syndrome (AS) is a neurodevelopmental disorder caused due to deletions or loss-of-function mutations in maternally inherited UBE3A. Ube3a functions as an ubiquitin ligase as well as a transcriptional coactivator of steroid hormone receptors. However, the mechanisms by which maternal Ube3a deficiency gives rise to phenotypic features of AS are not clear. We report here that Ube3a regulates glucocorticoid receptor (GR) transactivation and GR signaling pathway is disrupted in Ube3a-maternal-deficient mice brain. The expression of several GR-dependent genes is down-regulated in multiple brain regions of Ube3a-maternal-deficient mice. AS mice show significantly higher level of blood corticosterone, selective loss of GR and reduced number of parvalbumin-positive inhibitory interneurons in their hippocampus that could ultimately lead to increased stress. These mice also exhibit increased anxiety-like behavior, which could be due to chronic stress. Altogether, our findings suggest that chronic stress due to altered GR signaling might lead to anxiety-like behavior in a mouse of model of AS.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddr614