Loading…

Extraction of shear viscosity in stationary states of relativistic particle systems

Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302
Main Authors: Reining, F, Bouras, I, El, A, Wesp, C, Xu, Z, Greiner, C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753
cites cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753
container_end_page 026302
container_issue 2 Pt 2
container_start_page 026302
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 85
creator Reining, F
Bouras, I
El, A
Wesp, C
Xu, Z
Greiner, C
description Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.
doi_str_mv 10.1103/PhysRevE.85.026302
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963832194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963832194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBCIlsIPcEC5cUpx7Nixj6gqD6kSiMfZcpyNGpQ2xetW5O9xaMtpR7szo9kh5Dqj0yyj_O512eMb7OZTJaaUSU7ZCRlnQtCU8UKeDpjrlBdCjMgF4helnHGVn5MRY7nkPGNj8j7_Cd660HTrpKsTXIL1ya5B12ET-qRZJxjscLW-_4OAA89DG7eRFxqXbKyPo4UEewywwktyVtsW4eowJ-TzYf4xe0oXL4_Ps_tF6nguQ5oLKMHyvNaVq6grtS2kZJxVVtMYUypbK6EFKOEqWZa10mVBSykEFJrmheATcrv33fjuewsYzCoGh7a1a-i2aLTkirNM55HJ9kznO0QPtdn4ZhVfMhk1Q5fm2KVRwuy7jKKbg_22XEH1LzmWx38Be-RzFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963832194</pqid></control><display><type>article</type><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</creator><creatorcontrib>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</creatorcontrib><description>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.85.026302</identifier><identifier>PMID: 22463312</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</citedby><cites>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reining, F</creatorcontrib><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>El, A</creatorcontrib><creatorcontrib>Wesp, C</creatorcontrib><creatorcontrib>Xu, Z</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBCIlsIPcEC5cUpx7Nixj6gqD6kSiMfZcpyNGpQ2xetW5O9xaMtpR7szo9kh5Dqj0yyj_O512eMb7OZTJaaUSU7ZCRlnQtCU8UKeDpjrlBdCjMgF4helnHGVn5MRY7nkPGNj8j7_Cd660HTrpKsTXIL1ya5B12ET-qRZJxjscLW-_4OAA89DG7eRFxqXbKyPo4UEewywwktyVtsW4eowJ-TzYf4xe0oXL4_Ps_tF6nguQ5oLKMHyvNaVq6grtS2kZJxVVtMYUypbK6EFKOEqWZa10mVBSykEFJrmheATcrv33fjuewsYzCoGh7a1a-i2aLTkirNM55HJ9kznO0QPtdn4ZhVfMhk1Q5fm2KVRwuy7jKKbg_22XEH1LzmWx38Be-RzFg</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Reining, F</creator><creator>Bouras, I</creator><creator>El, A</creator><creator>Wesp, C</creator><creator>Xu, Z</creator><creator>Greiner, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><author>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Reining, F</creatorcontrib><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>El, A</creatorcontrib><creatorcontrib>Wesp, C</creatorcontrib><creatorcontrib>Xu, Z</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reining, F</au><au>Bouras, I</au><au>El, A</au><au>Wesp, C</au><au>Xu, Z</au><au>Greiner, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of shear viscosity in stationary states of relativistic particle systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-02</date><risdate>2012</risdate><volume>85</volume><issue>2 Pt 2</issue><spage>026302</spage><epage>026302</epage><pages>026302-026302</pages><artnum>026302</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</abstract><cop>United States</cop><pmid>22463312</pmid><doi>10.1103/PhysRevE.85.026302</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_963832194
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Extraction of shear viscosity in stationary states of relativistic particle systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20shear%20viscosity%20in%20stationary%20states%20of%20relativistic%20particle%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Reining,%20F&rft.date=2012-02&rft.volume=85&rft.issue=2%20Pt%202&rft.spage=026302&rft.epage=026302&rft.pages=026302-026302&rft.artnum=026302&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.85.026302&rft_dat=%3Cproquest_cross%3E963832194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963832194&rft_id=info:pmid/22463312&rfr_iscdi=true