Loading…
Extraction of shear viscosity in stationary states of relativistic particle systems
Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753 |
---|---|
cites | cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753 |
container_end_page | 026302 |
container_issue | 2 Pt 2 |
container_start_page | 026302 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 85 |
creator | Reining, F Bouras, I El, A Wesp, C Xu, Z Greiner, C |
description | Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations. |
doi_str_mv | 10.1103/PhysRevE.85.026302 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963832194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963832194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBCIlsIPcEC5cUpx7Nixj6gqD6kSiMfZcpyNGpQ2xetW5O9xaMtpR7szo9kh5Dqj0yyj_O512eMb7OZTJaaUSU7ZCRlnQtCU8UKeDpjrlBdCjMgF4helnHGVn5MRY7nkPGNj8j7_Cd660HTrpKsTXIL1ya5B12ET-qRZJxjscLW-_4OAA89DG7eRFxqXbKyPo4UEewywwktyVtsW4eowJ-TzYf4xe0oXL4_Ps_tF6nguQ5oLKMHyvNaVq6grtS2kZJxVVtMYUypbK6EFKOEqWZa10mVBSykEFJrmheATcrv33fjuewsYzCoGh7a1a-i2aLTkirNM55HJ9kznO0QPtdn4ZhVfMhk1Q5fm2KVRwuy7jKKbg_22XEH1LzmWx38Be-RzFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963832194</pqid></control><display><type>article</type><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</creator><creatorcontrib>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</creatorcontrib><description>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.85.026302</identifier><identifier>PMID: 22463312</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</citedby><cites>FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22463312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reining, F</creatorcontrib><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>El, A</creatorcontrib><creatorcontrib>Wesp, C</creatorcontrib><creatorcontrib>Xu, Z</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBCIlsIPcEC5cUpx7Nixj6gqD6kSiMfZcpyNGpQ2xetW5O9xaMtpR7szo9kh5Dqj0yyj_O512eMb7OZTJaaUSU7ZCRlnQtCU8UKeDpjrlBdCjMgF4helnHGVn5MRY7nkPGNj8j7_Cd660HTrpKsTXIL1ya5B12ET-qRZJxjscLW-_4OAA89DG7eRFxqXbKyPo4UEewywwktyVtsW4eowJ-TzYf4xe0oXL4_Ps_tF6nguQ5oLKMHyvNaVq6grtS2kZJxVVtMYUypbK6EFKOEqWZa10mVBSykEFJrmheATcrv33fjuewsYzCoGh7a1a-i2aLTkirNM55HJ9kznO0QPtdn4ZhVfMhk1Q5fm2KVRwuy7jKKbg_22XEH1LzmWx38Be-RzFg</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Reining, F</creator><creator>Bouras, I</creator><creator>El, A</creator><creator>Wesp, C</creator><creator>Xu, Z</creator><creator>Greiner, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201202</creationdate><title>Extraction of shear viscosity in stationary states of relativistic particle systems</title><author>Reining, F ; Bouras, I ; El, A ; Wesp, C ; Xu, Z ; Greiner, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Reining, F</creatorcontrib><creatorcontrib>Bouras, I</creatorcontrib><creatorcontrib>El, A</creatorcontrib><creatorcontrib>Wesp, C</creatorcontrib><creatorcontrib>Xu, Z</creatorcontrib><creatorcontrib>Greiner, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reining, F</au><au>Bouras, I</au><au>El, A</au><au>Wesp, C</au><au>Xu, Z</au><au>Greiner, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of shear viscosity in stationary states of relativistic particle systems</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-02</date><risdate>2012</risdate><volume>85</volume><issue>2 Pt 2</issue><spage>026302</spage><epage>026302</epage><pages>026302-026302</pages><artnum>026302</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.</abstract><cop>United States</cop><pmid>22463312</pmid><doi>10.1103/PhysRevE.85.026302</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-02, Vol.85 (2 Pt 2), p.026302-026302, Article 026302 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_963832194 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Extraction of shear viscosity in stationary states of relativistic particle systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20shear%20viscosity%20in%20stationary%20states%20of%20relativistic%20particle%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Reining,%20F&rft.date=2012-02&rft.volume=85&rft.issue=2%20Pt%202&rft.spage=026302&rft.epage=026302&rft.pages=026302-026302&rft.artnum=026302&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.85.026302&rft_dat=%3Cproquest_cross%3E963832194%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c346t-45ebea34f9dcd0cb9a766232da9038468af8595e85cd6bbf89b70b655e7904753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963832194&rft_id=info:pmid/22463312&rfr_iscdi=true |