Loading…
Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences
Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to measure the effects of the tidal coupling in such systems. Tidal effects provide additional contributions to the phase evolution of the gravitational wave signal that break a degeneracy betwe...
Saved in:
Published in: | Physical review letters 2012-02, Vol.108 (9), p.091101-091101, Article 091101 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Detection of gravitational waves from the inspiral phase of binary neutron star coalescence will allow us to measure the effects of the tidal coupling in such systems. Tidal effects provide additional contributions to the phase evolution of the gravitational wave signal that break a degeneracy between the system's mass parameters and redshift and thereby allow the simultaneous measurement of both the effective distance and the redshift for individual sources. Using the population of O(10(3)-10(7)) detectable binary neutron star systems predicted for 3rd generation gravitational wave detectors, the luminosity distance-redshift relation can be probed independently of the cosmological distance ladder and independently of electromagnetic observations. We conclude that for a range of representative neutron star equations of state the redshift of such systems can be determined to an accuracy of 8%-40% for z |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.091101 |