Loading…
Cortical brain imaging by adaptive filtering of NIRS signals
► Run-time (real-time) brain imaging framework. ► Robust-adaptive RLSE-based spatial filter besides estimator. ► Robust treatment of each measuring channel unanimously as per the requirement. ► Applicable for online medical diagnostics and therapeutic studies. This paper presents an online brain ima...
Saved in:
Published in: | Neuroscience letters 2012-04, Vol.514 (1), p.35-41 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 35 |
container_title | Neuroscience letters |
container_volume | 514 |
creator | Aqil, Muhammad Hong, Keum-Shik Jeong, Myung-Yung Ge, Shuzhi Sam |
description | ► Run-time (real-time) brain imaging framework. ► Robust-adaptive RLSE-based spatial filter besides estimator. ► Robust treatment of each measuring channel unanimously as per the requirement. ► Applicable for online medical diagnostics and therapeutic studies.
This paper presents an online brain imaging framework for cognitive tasks conducted with functional near-infrared spectroscopy (fNIRS). The measured signal at each channel is regarded as the output from a linear system with unknown coefficients. The unknown coefficients are estimated by using the recursive least squares estimation (RLSE) method. The validity of the estimated parameters is tested using the t-statistics. Contrary to the classical approach that is offline and applies the same preprocessing scheme to all channels, the proposed RLSE method for a linear model formulation provides an independent robust adaptive process for individual channels. The experiments carried out with two fNIRS instruments (continuous-wave and frequency-domain) have verified the potential of the proposed methodology which can facilitate a prompt medical diagnostics by providing real-time brain activation maps. |
doi_str_mv | 10.1016/j.neulet.2012.02.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_963833586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304394012002479</els_id><sourcerecordid>963833586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633</originalsourceid><addsrcrecordid>eNp9UNtKxDAUDKLoevkDkb751PWkuTQFEWTxBqLg5TmkzcmSpduuSbvg35tlVx-FAwPDzBlmCDmnMKVA5dVi2uHY4jAtgBZTSMfVHplQVRZ5WZXFPpkAA56zisMROY5xAQCCCn5IjoqCVQKUnJDrWR8G35g2q4PxXeaXZu67eVZ_Z8aa1eDXmDnfDhg2bO-yl6e39yz6eWfaeEoOXAI82-EJ-by_-5g95s-vD0-z2-e8YZIOuUWFHCS33AqQwgnnrEFlVSNZaZwByyoJthC2rqgrS1HRsqZCFC5RQjJ2Qi63f1eh_xoxDnrpY4Ntazrsx6gryRRjQsmk5FtlE_oYAzq9CqlS-NYU9GY2vdDb2fRmNg3puEq2i13AWC_R_pl-d0qCm60AU821x6Bj47Fr0PqAzaBt7_9P-AFcX39A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963833586</pqid></control><display><type>article</type><title>Cortical brain imaging by adaptive filtering of NIRS signals</title><source>Elsevier</source><creator>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung ; Ge, Shuzhi Sam</creator><creatorcontrib>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung ; Ge, Shuzhi Sam</creatorcontrib><description>► Run-time (real-time) brain imaging framework. ► Robust-adaptive RLSE-based spatial filter besides estimator. ► Robust treatment of each measuring channel unanimously as per the requirement. ► Applicable for online medical diagnostics and therapeutic studies.
This paper presents an online brain imaging framework for cognitive tasks conducted with functional near-infrared spectroscopy (fNIRS). The measured signal at each channel is regarded as the output from a linear system with unknown coefficients. The unknown coefficients are estimated by using the recursive least squares estimation (RLSE) method. The validity of the estimated parameters is tested using the t-statistics. Contrary to the classical approach that is offline and applies the same preprocessing scheme to all channels, the proposed RLSE method for a linear model formulation provides an independent robust adaptive process for individual channels. The experiments carried out with two fNIRS instruments (continuous-wave and frequency-domain) have verified the potential of the proposed methodology which can facilitate a prompt medical diagnostics by providing real-time brain activation maps.</description><identifier>ISSN: 0304-3940</identifier><identifier>EISSN: 1872-7972</identifier><identifier>DOI: 10.1016/j.neulet.2012.02.048</identifier><identifier>PMID: 22395086</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Brain Mapping - methods ; Cerebral Cortex - physiology ; Functional near-infrared spectroscopy ; Functional Neuroimaging - methods ; General linear model ; Humans ; Image Processing, Computer-Assisted ; Models, Neurological ; Optical brain imaging ; Real-time mapping ; Recursive least square estimation ; Reproducibility of Results ; Software ; Spectroscopy, Near-Infrared ; Statistical parametric mapping</subject><ispartof>Neuroscience letters, 2012-04, Vol.514 (1), p.35-41</ispartof><rights>2012 Elsevier Ireland Ltd</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633</citedby><cites>FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22395086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aqil, Muhammad</creatorcontrib><creatorcontrib>Hong, Keum-Shik</creatorcontrib><creatorcontrib>Jeong, Myung-Yung</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><title>Cortical brain imaging by adaptive filtering of NIRS signals</title><title>Neuroscience letters</title><addtitle>Neurosci Lett</addtitle><description>► Run-time (real-time) brain imaging framework. ► Robust-adaptive RLSE-based spatial filter besides estimator. ► Robust treatment of each measuring channel unanimously as per the requirement. ► Applicable for online medical diagnostics and therapeutic studies.
This paper presents an online brain imaging framework for cognitive tasks conducted with functional near-infrared spectroscopy (fNIRS). The measured signal at each channel is regarded as the output from a linear system with unknown coefficients. The unknown coefficients are estimated by using the recursive least squares estimation (RLSE) method. The validity of the estimated parameters is tested using the t-statistics. Contrary to the classical approach that is offline and applies the same preprocessing scheme to all channels, the proposed RLSE method for a linear model formulation provides an independent robust adaptive process for individual channels. The experiments carried out with two fNIRS instruments (continuous-wave and frequency-domain) have verified the potential of the proposed methodology which can facilitate a prompt medical diagnostics by providing real-time brain activation maps.</description><subject>Brain Mapping - methods</subject><subject>Cerebral Cortex - physiology</subject><subject>Functional near-infrared spectroscopy</subject><subject>Functional Neuroimaging - methods</subject><subject>General linear model</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Models, Neurological</subject><subject>Optical brain imaging</subject><subject>Real-time mapping</subject><subject>Recursive least square estimation</subject><subject>Reproducibility of Results</subject><subject>Software</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Statistical parametric mapping</subject><issn>0304-3940</issn><issn>1872-7972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAUDKLoevkDkb751PWkuTQFEWTxBqLg5TmkzcmSpduuSbvg35tlVx-FAwPDzBlmCDmnMKVA5dVi2uHY4jAtgBZTSMfVHplQVRZ5WZXFPpkAA56zisMROY5xAQCCCn5IjoqCVQKUnJDrWR8G35g2q4PxXeaXZu67eVZ_Z8aa1eDXmDnfDhg2bO-yl6e39yz6eWfaeEoOXAI82-EJ-by_-5g95s-vD0-z2-e8YZIOuUWFHCS33AqQwgnnrEFlVSNZaZwByyoJthC2rqgrS1HRsqZCFC5RQjJ2Qi63f1eh_xoxDnrpY4Ntazrsx6gryRRjQsmk5FtlE_oYAzq9CqlS-NYU9GY2vdDb2fRmNg3puEq2i13AWC_R_pl-d0qCm60AU821x6Bj47Fr0PqAzaBt7_9P-AFcX39A</recordid><startdate>20120411</startdate><enddate>20120411</enddate><creator>Aqil, Muhammad</creator><creator>Hong, Keum-Shik</creator><creator>Jeong, Myung-Yung</creator><creator>Ge, Shuzhi Sam</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120411</creationdate><title>Cortical brain imaging by adaptive filtering of NIRS signals</title><author>Aqil, Muhammad ; Hong, Keum-Shik ; Jeong, Myung-Yung ; Ge, Shuzhi Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brain Mapping - methods</topic><topic>Cerebral Cortex - physiology</topic><topic>Functional near-infrared spectroscopy</topic><topic>Functional Neuroimaging - methods</topic><topic>General linear model</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Models, Neurological</topic><topic>Optical brain imaging</topic><topic>Real-time mapping</topic><topic>Recursive least square estimation</topic><topic>Reproducibility of Results</topic><topic>Software</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Statistical parametric mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqil, Muhammad</creatorcontrib><creatorcontrib>Hong, Keum-Shik</creatorcontrib><creatorcontrib>Jeong, Myung-Yung</creatorcontrib><creatorcontrib>Ge, Shuzhi Sam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aqil, Muhammad</au><au>Hong, Keum-Shik</au><au>Jeong, Myung-Yung</au><au>Ge, Shuzhi Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical brain imaging by adaptive filtering of NIRS signals</atitle><jtitle>Neuroscience letters</jtitle><addtitle>Neurosci Lett</addtitle><date>2012-04-11</date><risdate>2012</risdate><volume>514</volume><issue>1</issue><spage>35</spage><epage>41</epage><pages>35-41</pages><issn>0304-3940</issn><eissn>1872-7972</eissn><abstract>► Run-time (real-time) brain imaging framework. ► Robust-adaptive RLSE-based spatial filter besides estimator. ► Robust treatment of each measuring channel unanimously as per the requirement. ► Applicable for online medical diagnostics and therapeutic studies.
This paper presents an online brain imaging framework for cognitive tasks conducted with functional near-infrared spectroscopy (fNIRS). The measured signal at each channel is regarded as the output from a linear system with unknown coefficients. The unknown coefficients are estimated by using the recursive least squares estimation (RLSE) method. The validity of the estimated parameters is tested using the t-statistics. Contrary to the classical approach that is offline and applies the same preprocessing scheme to all channels, the proposed RLSE method for a linear model formulation provides an independent robust adaptive process for individual channels. The experiments carried out with two fNIRS instruments (continuous-wave and frequency-domain) have verified the potential of the proposed methodology which can facilitate a prompt medical diagnostics by providing real-time brain activation maps.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>22395086</pmid><doi>10.1016/j.neulet.2012.02.048</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3940 |
ispartof | Neuroscience letters, 2012-04, Vol.514 (1), p.35-41 |
issn | 0304-3940 1872-7972 |
language | eng |
recordid | cdi_proquest_miscellaneous_963833586 |
source | Elsevier |
subjects | Brain Mapping - methods Cerebral Cortex - physiology Functional near-infrared spectroscopy Functional Neuroimaging - methods General linear model Humans Image Processing, Computer-Assisted Models, Neurological Optical brain imaging Real-time mapping Recursive least square estimation Reproducibility of Results Software Spectroscopy, Near-Infrared Statistical parametric mapping |
title | Cortical brain imaging by adaptive filtering of NIRS signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20brain%20imaging%20by%20adaptive%20filtering%20of%20NIRS%20signals&rft.jtitle=Neuroscience%20letters&rft.au=Aqil,%20Muhammad&rft.date=2012-04-11&rft.volume=514&rft.issue=1&rft.spage=35&rft.epage=41&rft.pages=35-41&rft.issn=0304-3940&rft.eissn=1872-7972&rft_id=info:doi/10.1016/j.neulet.2012.02.048&rft_dat=%3Cproquest_cross%3E963833586%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-de8e4064d4d5065f5ffdae8d8c637afa0d3960d25db91f775917b1552f25d5633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=963833586&rft_id=info:pmid/22395086&rfr_iscdi=true |